

The Combined Influence of the MJO and the Stratospheric Polar Vortex on NH Winter Weather Patterns

MOTIVATION

- Two modes of climate variability that affect the Northern Hemisphere (NH) polar jet stream variability are the Madden-Julian Oscillation [MJO; *Madden and Julian*, 1971] and the stratospheric polar vortex [SPV; e.g., Baldwin and Dunkerton, 1999, 2001].
- Understanding how these modes interact with the Northern Hemisphere (NH) polar jet stream is a key to narrowing the subseasonalto-seasonal (S2S) prediction gap [*Vitart et al.*, 2012].

FIG. 1. Diagram of the central hypothesis for this project.

- Past works have considered the influences of these modes separately, but that does not have to be the case (and likely is not).
- This work takes a novel approach and explores the importance of considering the strength of the SPV in understanding MJO interactions with the extratropical atmosphere (FIG. 1).

DATA AND METHODS

- **Reanalysis:** ERA-Interim daily-mean fields from 1979–2018, with focus on October - March (i.e., the active season for MJO & SPV).
- The MJO (phase and amplitude) is defined using the OLR MJO *Index* [OMI; *Kiladis et al.*, 2014], as the excited wave patterns are more tied to the MJO-related convection than the wind pattern.
- The strength of the **SPV** is defined by the standardized Northern Annular Mode (NAM) index at 100 hPa [NAM₁₀₀; e.g., *Thompson* and Wallace, 2000]. This level captures stratospheric events that are most likely to propagate down into the troposphere.

• <u>Composite Criteria:</u>

- An **MJO Event** is defined when the amplitude of the OMI Index is $>1\sigma$ for a given phase. Cases when the amplitude is $<1\sigma$ are considered **neutral**.
- A Strong (Weak) SPV Event is defined when NAM_{100} is >1 σ (<-1 σ) for five consecutive days. When the NAM₁₀₀ is between $\pm 1\sigma$, the SPV is considered **neutral**.

Phases 2,3,4 (Phases 7,8) are grouped together and chosen because they represent active (suppressed) convection over the Indian Ocean (Maritime Continent) - i.e., nearly opposite of each other.

	Neutral SPV	Weak SPV	Stroi SP\
Neutral MJO		40	40
MJO 2,3,4	93	26	34
MJO 7,8	87	21	18

TABLE 1. Number of events per case explored in the study. Only
 days in October - March (i.e., the extended cold season) are considered.

Jason C. Furtado¹ (jfurtado@ou.edu), Matthew R. Green¹, Elizabeth A. Barnes², Michelle L'Heureux³, Laura M. Ciasto³, Kirstin Harnos³, & Adam Allgood³ ¹School of Meteorology, University of Oklahoma, Norman, OK USA School of Meteorology, ²Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA

³NOAA Climate Prediction Center, College Park, MD, USA

P-A8-03

