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Conclusions

* Active MJO conditions in the West Pacific improve forecasts of TC intensity, but not TC location.

* Air-sea coupling strengthens the too-weak subtropical high in atmosphere-only forecasts, improving TC tracks.

* Seasonal forecasts over-estimate TC counts in the subtropical Pacific, associated with a northward ITCZ shift and a weak
subtropical high. ENSO teleconnections are under-estimated, but show a realistic spatial pattern.
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2. Datasets
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