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Summary 3. Added value of sea ice for Reanalysis
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NorCPM system & Experiment 4. Seasonal predictions skill

Prediction skill is tested by retrospective forecast in the period from 1985 to 2010 with 9 members and 4 start dates per year; we
Norwegian Earth System model (NorESM) Data assimilation (EnKF) Monte- Carlo integration compare NorCPMV1 and NorCPMV2 which depicts the added value of SIC assimilation
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Objectives B ’ Kimmritz et al. in prep We look at the detrended correlation of prediction of sea ice extent (SIE=sum(area | SIC > 15%)) vs that calculated from HadiSST2 for each

) Lof'g climate r?CO"Str.UCtiO"S (re.an.alySiS) lead-month (y-axis) and calendar month (x-axis) and organised by start date. A black dot indicates that the correlation is not significant
 Skillful and reliable climate prediction
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« CICE: multicategory sea ice model (v4)
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 NorESM-O: isopycnic coordinate ocean model SST"'Se]fI ice E:IT (SIC): Had|S|ST2 il . N
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3. Joint update of ocean & sea ice (strongly coupled DA) outperforms sea ice only update (weakly coupled DA)
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The réliability of the ensemble is Kimmritz et al. “Added value of sea ice assimilation for seasonal prediction in the Arctic” in prep
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