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Background & Motivation

Extreme precipitation—here defined as episodes in which daily precipitation ex-
ceeds the 95th percentile locally—has profound impacts on water management/
control, agriculture, and transportation interests. Many studies focus either on the
mesoscale to synoptic drivers of precipitation extremes!!], while others examine
bulk/global extreme statistics2l. Here, we investigate two prominent subseasonal
phenomena—the Madden-Julian oscillation (MJO) and atmospheric rivers
(ARs)Bl]—and their impact on extreme precipitation probabilities. We review
these phenomena using a hierarchy of ocean model complexity to understand po-
tential influences from the model representation of air-sea interaction.

Motivating Questi
¢ (1) What impact does air-sea interaction have on extreme precipitation?

* (2) How well does CESM2 simulate the MJO, ARs, and MJO-AR interactions?
* (3) How does the model’s representation of the MJO, ARs, and MJO-AR inter-
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extremes, and how do these behaviors change
across a CESM2 hierarchy of ocean model complexity?

Annual Mean
Precipitation
GPCPE

95th percentile of
daily precipitation

Greatest (qualitative) CESM2
agreement of mean, extreme
precipitation in extratropics;
less agreement in tropics

‘Why larger extreme thresholds
in coupled CESM2? Partially
due to larger SST variance vs.

prescribed-SST and slab-ocean
runs. The slab ocean run has a
cooler climate, making inter-
pretation of extremes less

clear.

What are the subseasonal in-
fluences on extreme precipita-
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Model MJO Depiction

MJO phase composites: Anomalous OLR [W m-2] and 850 hPa winds
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Fully coupled

Overall, OLR anomaly amplitudes are lower across

CESM2 hierarchy; wind anomaly amplitudes are
more realistic (a common feature of many GCMs)

Despite biases, fully coupled CESM2 shows signif-
icantly improved MJO signals compared to previous
CAM versions
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Multiple metrics (some omitted here) suggest more

realistic air-sea coupling improves MJO depiction

in CESM2 framework; the slab-ocean run produces
a slightly slower and stronger MJO than the pre-

Slab ocean

scribed-SST run despite the SOM’s cooler climate.
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* Source of MJO improvement is under investigation
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Erequency of Occurrence (Annual)
(Left) Pattern of AR activity generally well represent-
ed across CESM2 hierarchy despite differences in
MIJO depiction. CESM2 overestimates AR frequen-
cies in south Alaska and off the west coast of Mexico.
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(Right) This ratio (R) shows probability of lObservatior
exceeding 95th percentile of precipitation %

(P95) within any AR event. If ARs had no
influence on extremes, R would be 0.05
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everywhere. Instead, the R > 0.1 where ARs
are most active and can exceed 0.5—there,
the probability of exceeding P95 is 10x
more likely during AR events! Note: pre-
scribed-SST and SOM results similar.
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Modeling Strategy

Public-release version of CESM2 (cesm2_0_1); 3 total simulations

All runs use pre-industrial (“18507) radiative forcing on a 1° finite-volume grid

Each run is a single realization spanning ~22 yr (excludes 2 yr spinup)

(1) Fully coupled: Dynamic ocean model; dynamic sea ice model

(2) Prescribed-SST: Time-evolving monthly mean SST and sea ice from (1)

(3) Thermodynamic/“slab” ocean:

Sea ice: Prescribed, from time-evolving monthly means from (1)

Implied ocean heat transport: dSST
Qﬂx

dt

where Qg represents time-evolving monthly means and all terms are derived
from monthly means of (1) except Fie:, derived from daily means of (1).
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Generalization: Aquaplanets

AR frequency of occurrence SST forcing
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« Atmospheric rivers (as defined!*)) are a fundamental feature of aquaplanets; AR activity
is influenced by zonal asymmetries in tropical SST despite unchanged midlatitude SST

* Equatorward shift of AR frequency occurs where SSTs are warmest

* We plan to add simple topography to explore terrain influences on ARs

MIJO Influence on AR Frequency

MERRA/NOAA obs CAMS fully coupled
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 Plot depicts change in AR frequency (relative to Nov-Apr mean) for given MJO phase

 Despite similar AR Nov-Apr mean frequencies, large intraseasonal fluctuations

¢ Most intramodel similarity when MJO convective anomalies over Indonesia (phase 1, 5)

¢ Larger intramodel differences when MJO convective anomalies are over central Indian
Ocean, far West Pacific (phase 3, 7)
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Key Findings & Next Steps
* (Q1) Air-sea coupling, ocean model complexity impact extreme precipitation via local
air-sea interactions and through subseasonal variability phenomena.

* (Q2) Fully coupled CESM2 shows improved MJO depiction, prescribed-SST CAM6
produces marginally weaker MJO; adding slab ocean improves CESM2’s MJO
* (Q3) Both the MJO and ARs strongly influence extreme precipitation probabilities

* CESM2 AR probabilities fluctuate on intraseasonal time scales linked to MJO phase; dif-
ferences in fluctuations among model hierarchy highlight importance of air-sea cou-
pling for predictions of MJOs, the location of ARs, and thus probability of extremes.

o Next: Examine MJO-AR connections and midlatitude features that precede ARs in
CESM2; add complexity (“topography”) to aquaplanet, examine AR response
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