

Stephanie A. Henderson Daniel J. Vimont

Matthew Newman

Negative PNA

Matthew Newman

Data

- ERA-Interim reanalysis:
 - 200-hPa and 850-hPa streamfunction (15°N 90°N)
 - Vertically integrated apparent heat source (Q1; Yanai et al. 1973) 20°S – 15°N
- NOAA Optimum Interpolation Sea Surface Temperature (OISST) dataset (20°S – 15°N)
- Pentad (5-day) anomalies
- December February (DJF)
- Range: December 1982 February 2015
- Daily NOAA/NCEP Climate Prediction Center (CPC) PNA index

LIM approximates the evolution of a dynamical system by a multivariate linear model

- The forecast, $x(\tau)$, is the solution to the homogeneous part:

$$\mathbf{x}\left(\tau\right) = \mathbf{e}^{\mathbf{L}\tau}\mathbf{x}(\mathbf{0})$$

 $\mathbf{X}(\mathbf{0})$

- The forecast, $x(\tau)$, is the solution to the homogeneous part:

 $\mathbf{x}\left(\tau\right) = \mathbf{e}^{\mathbf{L}\tau}\mathbf{x}(\mathbf{0}) = \mathbf{G}_{\tau}\mathbf{x}(\mathbf{0})$

 $\mathbf{G}_{ au}$

 $\mathbf{G}_{\tau} = C_{\tau}/C_0$

- The forecast, $x(\tau)$, is the solution to the homogeneous part:

 $\mathbf{x}\left(\tau\right) = \mathbf{e}^{\mathbf{L}\tau}\mathbf{x}(\mathbf{0}) = \mathbf{G}_{\tau}\mathbf{x}(\mathbf{0})$ $\mathbf{L} = \ln(\mathbf{G}_{\tau})/\tau \qquad \mathbf{G}_{\tau} = C_{\tau}/C_0$ ${
m G}_{ au}$ $x(\tau)$ $\mathbf{x}(\mathbf{0})$

- We can estimate an optimal initial condition (**p**) by maximizing growth in the direction of a chosen norm (**N**) by solving the eigenvalue problem:

$$G_{\tau}^{T} \mathbf{N} G_{\tau} \mathbf{p} - \mu(\tau) \mathbf{p} = \mathbf{0}$$
norm eigenvector growth
(PNA)

Two eigenspaces of L

Recall: $\mathbf{L} = \ln(\mathbf{G}_{\tau})/\tau$ $\mathbf{G}_{\tau} = C_{\tau}/C_0$

Two eigenspaces of L

Recall: $\mathbf{L} = \ln(\mathbf{G}_{\tau})/\tau$ $\mathbf{G}_{\tau} = C_{\tau}/C_0$

Uncoupled LIM

Initial Condition

Final PNA pattern

200-hPa streamfunction

Uncoupled LIM

Tropical initial conditions removed

Unmodified p final PNA

Modified p final PNA

Extratropical initial conditions removed

Unmodified **p** final PNA

Modified **p** final PNA

Summary

- Linear inverse modeling (LIM) is used to examine the optimal conditions that lead to PNA pattern growth.
- Unfiltered LIM: suppressed tropical heating in the SPCZ, ENSO-related heating, and MJO-like heating in the east Indian Ocean optimally lead to PNA pattern growth.
- An uncoupled LIM is developed to examine PNA growth outside of ENSO. Optimal PNA growth is from MJO anomalous heating over the east Indian Ocean and suppressed heating over the Maritime continent and SPCZ.
- In the extratropics, the optimal initial condition agree with previous studies, including an anticyclonic anomaly over the East Pacific that retrogrades, becoming part of the PNA pattern.
- Modifying the initial conditions suggest both tropical heating and the extratropical circulation are important for PNA pattern growth in the uncoupled LIM.

