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Tropics-Extra-tropics

Coherent tropospheric response to modulation of tropical convection
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ETKF versus BVs case study 2016 El Nino

• Ensemble spread versus analysis increment during build up to 2016 El Niño.

• BVs add similar flow dependent structures to ETKF background covariances.

longitude

la
tit

ud
e

BV spread (contour); ETKF spread (shaded) 2015-10
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BV spread (contour); EnOI analysis increment (shaded) 2015-10
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ENSO Prediction case study
• Ensemble forecasts of NINO3.4 beginning January 2007 comparing isosurface BVs (F1) to BVs generated between 20◦N-
20◦N renormalised to 1% of the background RMSE (F0).
• Spread reduced in isosurface ensemble due to reduced error growth in regions unrelated to the thermocline.
• D1 is the reanalysed state estimates as compared to NCEP reanalysis v2.
Note: no SST perturbations are used in isosurface BVs - predictability comes from thermocline perturbations)
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ENSO Prediction: ROC curves for NINO4
ROC curves of the F0 20◦S-20◦N (black) and F1 isosurface (red) hindcasts (3960 model years) for
NINO4 calculated over a 15 year period (2 year lead-times, 11 members each starting every month
over the period 2003 to July 2017)
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Current work
• Assimilation of high resolution JRA-55 reanalysis data (hybrid sigma-pressure levels)

• Assimilation of OSISAF sea-ice concentration

ensemble spread 2014-06-06
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==========================================================

Current work

Reanalysis and decadal prediction
• 1988-2018 Coupled reanalysis (96 member ETKF)
• 1960 onwards Hindcast / forecast - 5 year leadtime initiated every season

- 30 member ETKF + multiscale breeding
Model configurations and development

• CM2.1 (2 degree atmosphere, 1 degree ocean (MOM5)
• CM2.5 (50km atmosphere (AM2/LM2, 1/4 degree ocean (MOM5))
• CMFLOR (50km atmosphere, 1 degree ocean)
• ACCESS ESM1.5 comparison studies (future model for decadal MIPS)
• KPP ocean surface boundary layer parameterization (CVMix Griffies et al

2015)
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Conclusion

• A properly observed ocean is required to constrain the slow climate ”manifold”

• For multi-year forecasting we do not try to track the fast convective or synoptic
scales of the atmosphere but rather excite the slow predictable modes coupled to
the ocean.

• Optimal perturbations for state estimation are not necessarily optimal for forecast-
ing a given climate mode at a given lead time and should be augmented or replaced
by perturbations specific to the phenomena of interest.

• Here we show that it is possible on seasonal timescales to modulate the mid-
troposphere jets via targeted perturbations to the tropical thermocline however,
how longer timescale memory residing in the subtropical oceans affects the atmo-
sphere and predictability is still unclear.

• The CAFE system is being developed as a tool to target and understand the mech-
anisms by which coherent variability determines predictability in the climate system
in the near term.
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