

Non Linear and Non Stationary Forecast Errors:

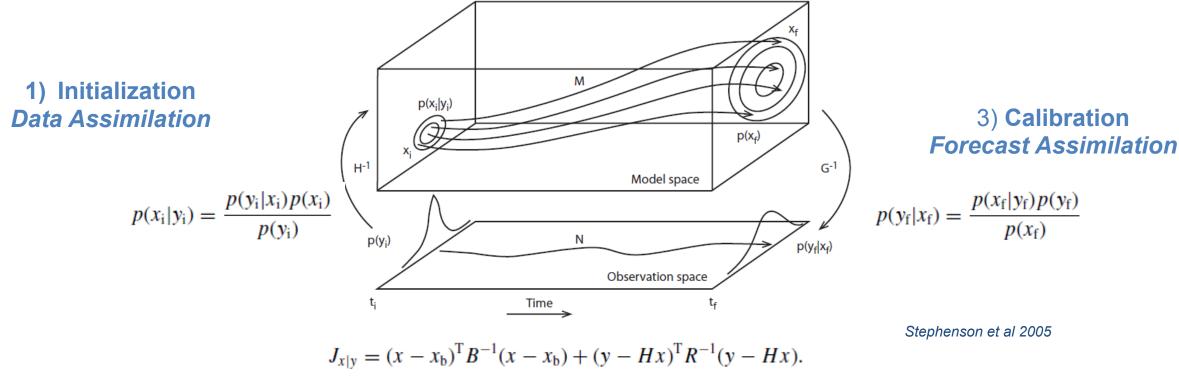
Time to revise the forecast strategy?

Magdalena A. Balmaseda Frederic Vitart

ECMWF, Shinfield Park, RG2 9AX, Reading, UK

End to end Initialized Probabilistic Forecasting System

2) **Propagating information, uncertainty and errors into the future**: *Forecast model*



Significant progress in representation of initial and model uncertainty but The treatment of model error is inconsistent along these 3 stages

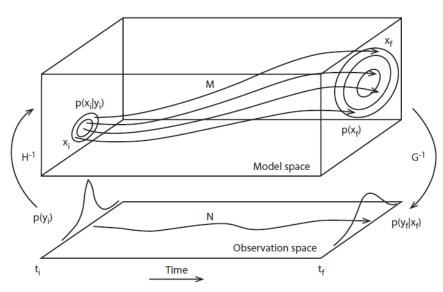
Inconsistent treatment of model errors

2) **Propagating information, uncertainty and error into the future**: *Forecast model*

- ✓ Stochastic parameterizations for sub-grid processes.
- X Other missing processes and earth system components not represented
- X Model bias is not targeted

1) Initialization Data Assimilation

- \checkmark Initial uncertainty considered.
- Model uncertainty starts being considered.
- ✓ Observation uncertainty considered
- ✓ Observation bias considered
- X Model bias ignored



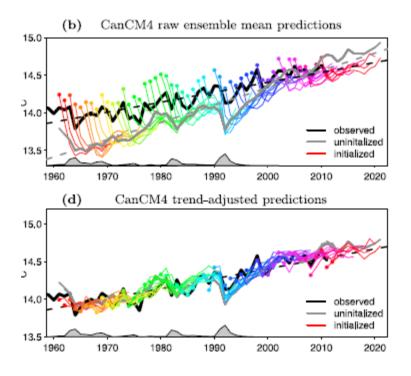
Model: $x=x+x+\epsilon i x$ Observations: $y=y+y+\epsilon i y$

3) Calibration Forecast Assimilation

- Model Bias accounted for: removed a posterirori. Stockdale et al 1997
- Model uncertainty considered (ensemble)
- Observation error neglected *
- Residuals are non stationary, non gaussian.

Limitation to forecast skill calibration is more difficult

Calibration $x = y + \mathbf{K}(x - x) + \mathbf{F}\varepsilon \mathbf{i}x + \mathbf{T}(t) + \mathbf{G}(\mathbf{y}_0)$



From Kharin eta la 2012

Bias correction ($x \neq y$)

- **K**: linear transformation of anomalies
- F: Adjustment of ensemble spread
- T: detrending
- G: other flow dependent corrections

Stephenson et al 2005. Kharin et al 2012 Fukar et al 2014

Need very long reforecast records for robust estimation of many parameters *Expensive, not records long enough are available*

• Error in mean state errors degrades variability and forecast skill

Mean state error influencing model fidelity and predictability

Correcting model biases leads to better representation of variability (or model fidelity):

(several papers: D'Andrea and Vautard 2000, Balmaseda et al 2010, Scaife 2011,)

Correcting bias in tropical SST improves seasonal forecast skill of ENSO, tropical cyclones...

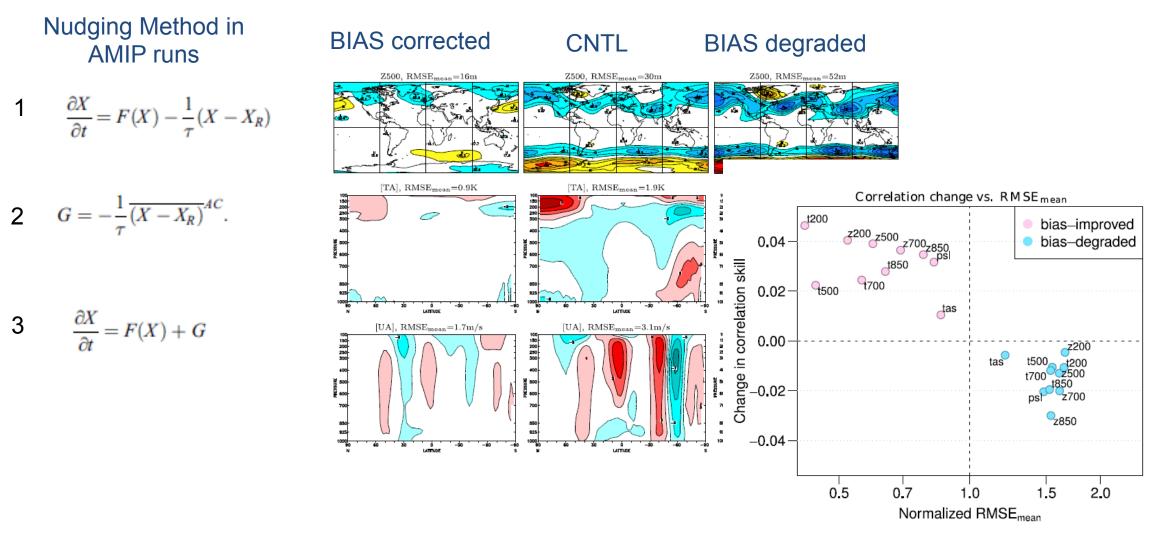
Magnusson et al 2012, Vecchi et al 2014:

Correcting biases in atmosphere improves seasonal atmospheric predictability:

Kharin and Scinocca 2012

Correcting North Atlantic SST bias improves subseasonal skill over North Atlantic and Europe Vitart 2018

Impact on atmospheric mean errors in variability and predictability

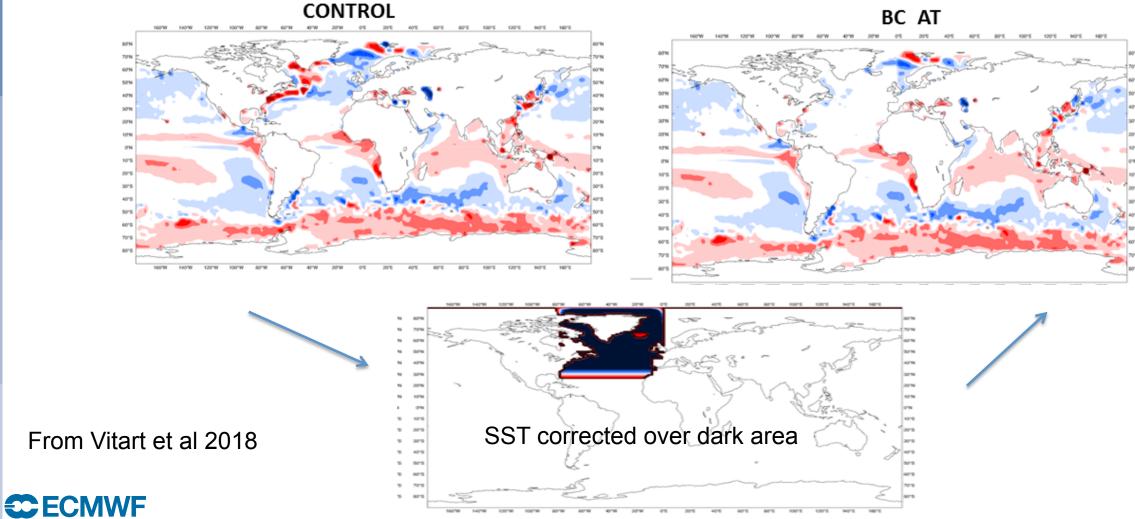


From Kharin and Scinocca 2012

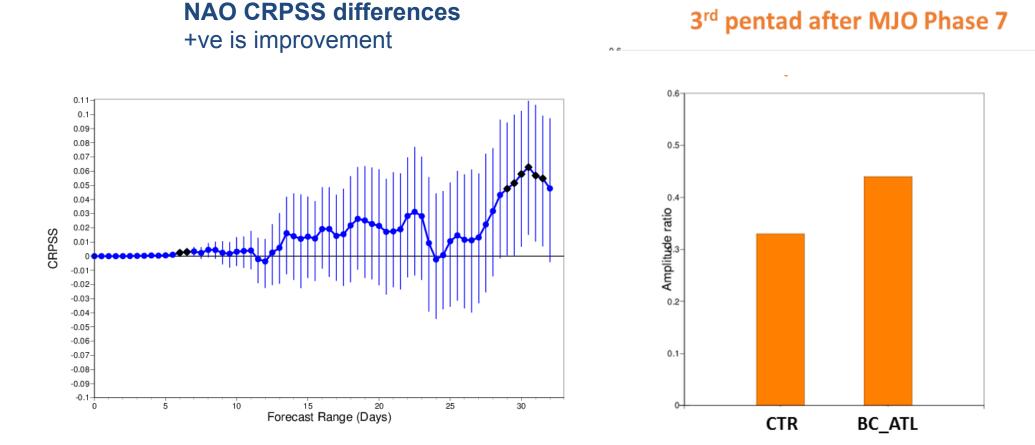
Non linear interactions: North Atlantic SST errors impact subseasonal forecast skill

SST Biases Week 4 (day 26-32)

DJF (162 start dates)



Non linear interactions: North Atlantic SST errors impact subseasonal forecast skill



From Vitart et al 2018

Main impact is on MJO/ NAO -ve teleconnections

Treatment of model error during the forecast

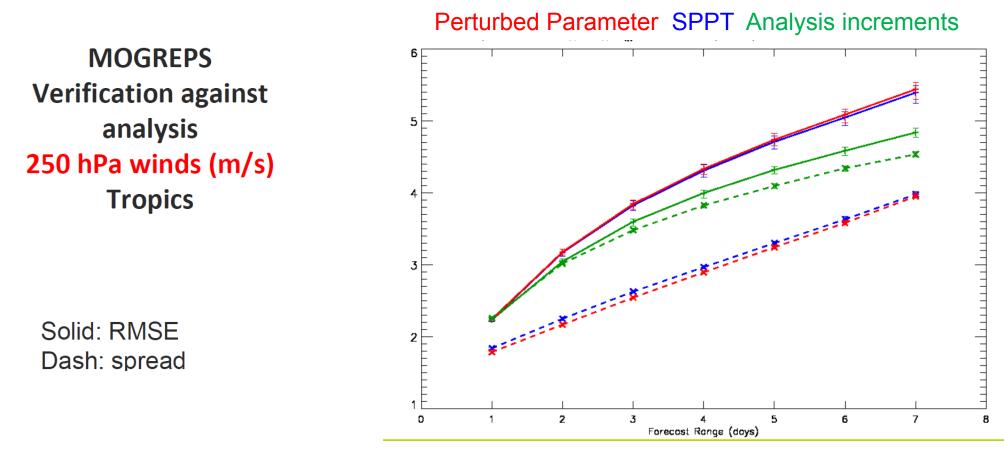
A. Stochastic parameterizations of sub-grid scale processes

- SPPT, SPP, SKEB, intrinsic stochastic parameterizations. See Berner et al 2017 for a review.
- They increase the ensemble spread (Leutbecher et al 2018). Important for tropical convection and ENSO (Weisheimer et al 2014).
- They do not tackle model bias explicitly, but change model climate (Christensen et al 2017, Berner et al 2018)
- Choice of parameters: tuned to calibrate ensemble spread or first principles
- No optimal control with observational constraint on
- **C. Model error estimation based on observational "optimal" control** : data assimilation to estimate model error (or approximations) $\mathbf{x}_i = M_i(\mathbf{x}_{i-1}) + \eta_i$
 - D'Andrea and Vautard 2000
 - Piccolo and Cullen 2016

$$J(\eta) = \frac{1}{2} \sum_{i=1}^{n} \eta_i^T \mathbf{Q}^{-1} \eta_i + \frac{1}{2} \sum_{i=1}^{n} (H_i(\mathbf{x}_i) - \mathbf{y}_i)^T \mathbf{R}^{-1} (H_i(\mathbf{x}_i) - \mathbf{y}_i)$$

-Proxi: nugdging terms as in Kharin and Scinocca 2012...

Comparison of model error approaches: medium range



Credit: Chiara Piccolo; see also Piccolo and Cullen 2016

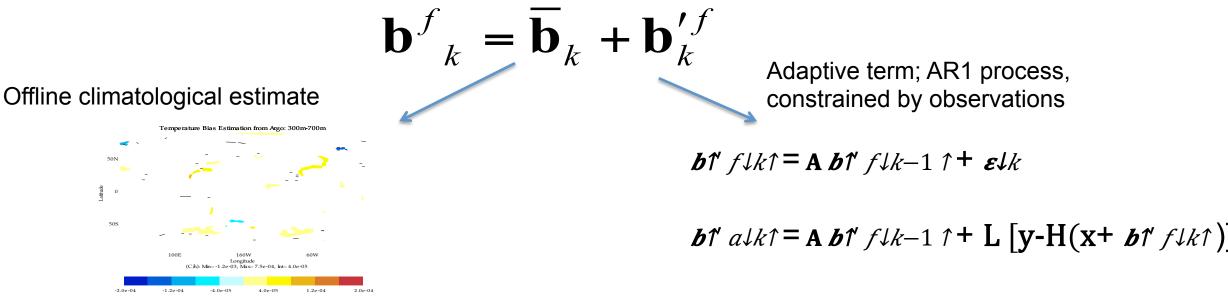
Assimilation increments sample mean error. Likely reason for improved peformance Caveat: model bias is currently ignored in atmospheric data assimilation systems.

Model bias treated explicitly in ocean data assimilation

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{b}^{f} + \mathbf{K}[\mathbf{y} - \mathbf{H}(\mathbf{x}^{f} + \mathbf{b}^{f})]$$
$$\mathbf{b}^{a} = \mathbf{b}^{f} + \mathbf{L}[\mathbf{y} - \mathbf{H}(\mathbf{x}^{f} + \mathbf{b}^{f})]$$

Dee and DaSilva 1998 Dee and Todling 2001 Tremolet 2007

Example: scheme in ECMWF ORAS



Balmaseda et al 2007

Summary

 It is possible to produce more skilful predictions at extended and seasonal range by correcting model bias during forecast phase

- It is possible to design a consistent framework for treatment of model bias:
 - estimation of model bias during data assimilation phase using observational constrain.
 - bias estimate applied during forecast phase. Complementary to stochastic physics
 - This should produce improved forecast, easier to calibrate .
- The nudging residuals provide a starting point for experimentation
- Machine learning can be applied to model error terms (assimilation increments, nudging terms)
- Future forecasting systems:
 - Combination dynamical models for the signals and empirical stochastic models for the errors.
 - Consistent treatment of model error in the 3 stages of probabilistic forecast.

ECMWF- 2019 Annual Seminar: 2-6 September

Subseasonal and seasonal forecasting: recent progress and future prospects