Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system

Michael Sigmond

Canadian Centre for Climate Modelling and Analysis (CCCma)
Victoria, BC, Canada

Reader, Merryfield, Flato, Kharin (CCCma) Tivy (CIS)

International Conferences on Subseasonal to Decadal Prediction, NCAR, Boulder, 18-21 September 2018
Context

• Seasonal forecasting of sea ice a young field

 \textit{first systems with coupled sea ice component operational in} \textit{~2010}

• First studies: area-integrated quantities such as Sea Ice Extent\textit{Of little relevance to end-users (e.g. transport, tourism, Coast Guard, Northern Communities, resource extraction)}

• Community is moving toward (monthly mean) regional or local sea ice concentration/sea ice edge

• This study: quantifying skill of local dates at which ice melts (retreat) or forms (advance date)

 \begin{itemize}
 \item Based on daily data
 \item Directly relevant to end users
 \end{itemize}
Outline

1) How far in advance can local sea ice retreat/advance date be skillfully predicted?

2) What are the sources of skill?

3) Initial attempts to produce operational forecasts

Model, data and method:

- **Model:** Canadian Seasonal to Interannual Prediction System
 - based on 2 GCMs: CanCM3 and CanCM4
 - Same ocean and sea ice
 - Different atmosphere
 - 10 ensemble members for each GCM
 - 12 month forecast range
 - SI concentration initialized with (re)analyses (nudging)
 - SI thickness initialized with climatology (nudging)

- **Data:** Hindcasts initialized every month between 1979-2010

- **Retreat date:** First calendar day with SIC < 50%

- **Maximum lead time with skill:**

 \[\text{climatological date} - \text{earliest initialization month with skill}\]

 \[
 \uparrow
 \]

 ACC > 0.3 (p=0.05)
Forecast skill (ACC)
Forecast skill (ACC)
Sources of skill: Trend

With trend

Retreat

2.9

Advance: Even larger contribution (36%)
Even after detrending: advance skill > retreat skill
Sources of skill: Persistence

- Retreat: most of obtained model skill explained by persistence
- But our model beats persistence

Maximum lag with skill of retreat date forecasts made by persisting initially observed SIC anomaly
Sources of skill: Persistence

- **Retreat:** Most of obtained model skill explained by persistence
 - But our model beats persistence

- **Advance:** Almost no skill from persistence
 - Due to absence of sea ice prior to advance (no anomaly to persist \(\rightarrow \) persist. = clim.)
 - Additional value considerable!
Sources of skill (advance): Reemergence
Sources of skill (advance): Reemergence

Hudson Bay

ACC

0.8
0.6
0.4
0.2
0.0

Model
Sea Ice persis.
SST regr.

Retreat
Advance

Corr (initial SST, advance date)

Sea-ice ini.
ocean ini.

Initialization month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

melt Summer growth
Initial steps towards operational forecasts

- Problem: real-time CanSIPS forecasts not usable due to inconsistency between hindcasts and forecasts initial conditions
- Solved this by producing historical dataset that is closer to that used to initialize forecasts, and redoing the hindcasts
- Also improved SIT initialization

→ Usable sea ice forecasts
→ More skillful retreat/advance date forecasts

\[\text{retreat: } 3 \rightarrow 5 \text{ month in advance}\]
\[\text{advance: } 5 \rightarrow 7 \text{ month in advance}\]
Advance date forecasts skillful at 5 month lead
• Drops to 3.3 months for detrended anomalies
• Sea ice persistence provides no skill
• Model skill stems from skillful SST predictions

First experimental forecast: 2018 retreat date anomaly (cf 2009-2017)
Advance date forecasts skillful at 5 month lead
Drops to 3.3 months for detrended anomalies
Sea ice persistence provides no skill
Model skill stems from skillful SST predictions

First experimental forecast:
2018 retreat date anomaly (cf 2009-2017)
Summary:

• Skillful seasonal forecasts of socio-economically relevant sea ice events

• Advance dates predictions more skillful (~5-7 months) than retreat dates (~3-5 months)

• Sources of skill: trend, persistence and re-emergence (SSTs)

• Working towards implementation into operations

• Working with end users (future: probabilistic forecasts)

Thanks!

Michael.Sigmond@canada.ca

Extra slides
Climatology (1979-2010)

- Hindcast climatologies of retreat dates correspond well with obs
Methodology

Retreat
First calendar day with SIC<0.5 for at least 10 days

Model hindcasts

Initialization date

Advance
First calendar day with SIC>0.5 for at least 10 days

Model hindcasts

Initialization date

- Skill metric: Anomaly correlation coefficient (stat. significant: >0.3)

- Maximum lead time with skill:
 [climatological date] – [first initialization date with skill]
Initialization (hindcast/forecast):

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC</td>
<td>HadISST1/CMC</td>
<td>Had2CIS/CMC</td>
</tr>
<tr>
<td>SIT</td>
<td>Clim./Clim.</td>
<td>SMv3/SMv3</td>
</tr>
<tr>
<td>Subsurface ocean temp</td>
<td>GODAS/GIOPS</td>
<td>ORAp5/GIOPS</td>
</tr>
</tbody>
</table>
Forecast skill for retreat date (ACC)
Forecast skill for advance date (ACC)

Current

ACC Nov init. | Earliest | Max. lag

NEW

ACC Nov init. | Earliest | Max. lag

4.7

6.7