

Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system

Michael Sigmond

Canadian Centre for Climate Modelling and Analysis (CCCma) Victoria, BC, Canada

Reader, Merryfield, Flato, Kharin (CCCma) Tivy (CIS)

International Conferences on Subseasonal to Decadal Prediction, NCAR, Boulder, 18-21 September 2018

Context

- Seasonal forecasting of sea ice a young field first systems with coupled sea ice component operational in ~2010
- First studies: area-integrated quantities such as Sea Ice ExtentOf little relevance to end-users (e.g. transport, tourism, Coast Guard, Northern Communities, resource extraction)
- Community is moving toward (monthly mean) regional or local sea ice concentration/sea ice edge
- This study: quantifying skill of local dates at which ice melts (retreat) or forms (advance date)
 - o Based on daily data
 - Directly relevant to end users

Outline

 How far in advance can local sea ice retreat/advance date be skillfully predicted?

Sigmond et al. 2016, *Geophys. Res. Lett*

- 2) What are the sources of skill?
- 3) Initial attempts to produce operational forecasts

Model, data and method:

- Model: <u>Canadian Seasonal to Interannual Prediction System</u>
 - based on 2 GCMs: CanCM3 and CanCM4
 - Same ocean and sea ice
 - Different atmosphere
 - 10 ensemble members for each GCM
 - 12 month forecast range
 - SI concentration initialized with (re)analyses (nudging)
 - SI thickness initialized with climatology (nudging)
- Data: Hindcasts initialized every month between 1979-2010
- Retreat date: First calendar day with SIC < 50%
- Maximum lead time with skill: [climatological date] – [earliest initialization month with skill]

ACC>0.3 (p=0.05)

Forecast skill (ACC)

Forecast skill (ACC)

ACC Nov init.

Advance

Sources of skill: Trend

With trend

Sources of skill: Persistence

- Retreat: most of obtained model skill explained by persistence
- But our model beats persistence

Persis. Detrended

Maximum lag with skill of retreat date forecasts made by **persisting** initially observed **SIC anomaly**

Sources of skill: Persistence

- Retreat: most of obtained model skill explained by persistence
- But our model beats persistence

Persis. Detrended

- Advance: Almost no skill from persistence
- Due to absence of sea ice prior to advance (no anomaly to persist → persist.=clim.)
- Additional value considerable!

Sources of skill (advance): Reemergence

Sources of skill (advance): Reemergence

Initial steps towards operational forecasts

- Problem: real-time CanSIPS forecasts not usable due to inconsistency between hindcasts and forecasts initial conditions
- Solved this by producing historical dataset that is closer to that used to initialize forecasts, and redoing the hindcasts
- Also improved SIT initialization
- \rightarrow Usable sea ice forecasts
- → More skillful retreat/advance date forecasts

retreat: $3 \rightarrow 5$ *month in advance*

advance: $5 \rightarrow 7$ month in advance

First experimental forecast: 2018 retreat date anomaly (cf 2009-2017)

First experimental forecast: 2018 retreat date anomaly (cf 2009-2017)

Summary:

- Skillful seasonal forecasts of socio-economically relevant sea ice events
- Advance dates predictions more skillful (~5-7 months) than retreat dates (~3-5 months)
- Sources of skill: trend, persistence and re-emergence (SSTs)
- Working towards implementation into operations
- Working with end users (future: probabilistic forecasts)

Thanks!

Michael.Sigmond@canada.ca Sigmond et al. 2016, Geophys. Res. Lett

Extra slides

Climatology (1979-2010)

Observations

Retreat

Model hindcasts

Aug 1

Jul 1

Jun 1

May 1

 Hindcast climatologies of retreat dates correspond well with obs

Methodology

Retreat

First calendar day with SIC<0.5 for at least 10 days

Model hindcasts

Initialization date

Advance

First calendar day with SIC>0.5 for at least 10 days

Initialization date

- <u>Skill metric</u>: Anomaly correlation coefficient (stat. significant: >0.3)
- Maximum lead time with skill: [climatological date] – [first initialization date with skill]

Initialization (hindcast/forecast):

	Current	New
SIC	HadISST1/CMC	Had2CIS/CMC
SIT	Clim./Clim.	SMv3/SMv3
Subsurface ocean temp	GODAS/GIOPS	ORAp5/GIOPS

Forecast skill for retreat date (ACC)

ACC May init.

ACC May init.

New

Forecast skill for advance date (ACC)

