Predicting ocean oxygen: capabilities and potential

Matthew C. Long & Stephen Yeager
Climate and Global Dynamics Laboratory
National Center for Atmospheric Research
Oxygen is a fundamental environmental constraint

![Graph showing oxygen concentration and its effects on water, animals, and microbes](image)

\[N^* = NO_3^- - r_{N:P}PO_4^{3-} \]

- **Water**: Graph showing volume of water with different thresholds and regions.
- **Animals**: Graph showing the fraction of species across different oxygen concentrations.
- **Microbes**: Graph showing nitrate deficit across different oxygen concentrations.

Nutrients & O₂: WOA2013; Mortality data: Vaquer-Sunyer & Duarte, 2008
Warming up, turning sour, losing breath*

CMIP5 multi-model global-mean projections

Doney, Bopp, & Long, 2014

Gruber, 2011
Physical & biological controls on interior oxygen

Graphic credit: M. Long and R. Johnson (NCAR)
Timescales of natural variability in thermocline O_2

Variance-weighted mean period (CESM 1850-control)

$$T_x = \frac{\sum_k V(f_k, x)}{\sum_k f_k V(f_k, x)}$$
A persistent bias in Earth system models: Extensive OMZs

Thermocline (400–600 m) O_2 distributions

Observations

CESM
CESM Decadal Prediction Large Ensemble

Diagram:
- CORE-forcing
 - FOSI
 - Evaluation
 - Initialization
 - CPL
 - ATM
 - LND
 - OCN
 - CICE
Thermocline oxygen concentrations look to be highly predictable

Anomaly correlation coefficient: O_2 on $\sigma_\theta = 26.5$

courtesy of S. Yeager
Thermocline oxygen concentrations look to be highly predictable

Anomaly correlation coefficient: Salinity on $\sigma_\theta = 26.5$

courtesy of S. Yeager
North Pacific dissolved oxygen is skillfully predicted

Thermocline O_2 concentration

“Thermocline” := 200–600m mean
What mechanisms provide predictability for O$_2$?

Tracer tendency equation

\[
\frac{\partial O_2}{\partial t} + (u + u^*) \cdot \nabla O_2 = D_{iso}(O_2) + D_{dia}(O_2) + J_{bio}(O_2)
\]
What mechanisms provide predictability for O_2?

O_2 term balance: annual mean
What mechanisms provide predictability for O$_2$?

O$_2$ term balance: interannual variability (std. dev.)

- Lateral advection
- Vertical advection
- Vertical mixing (diabatic)
- Vertical mixing (adiabatic)
- Lateral mixing
- Source/sink

120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W
15°N 30°N 45°N 60°N

mol m$^{-2}$ yr$^{-1}$
Timeseries observations of oxygen are sparse

Model skill in CalCOFI* region: questionable

Thermocline O$_2$

* California Cooperative Oceanic Fisheries Investigations
CalCOFI dissolved oxygen is skillfully predicted

Thermocline O₂ in CalCOFI region

Thermocline O₂ tendency

O₂ inventory 1-5 year lead

Total tendency 1-5 year lead

mol m⁻²

Year

mol m⁻² yr⁻¹

Year

What mechanisms provide predictability for O_2?

O_2 term balance: annual mean
What mechanisms provide predictability for O$_2$?

O$_2$ term balance: annual mean

[Graphs showing various mechanisms for O$_2$ term balance over the years from 1960 to 2010, including lateral advection, vertical advection (diabatic), vertical mixing (diabatic), lateral mixing, and source/sink over a 1-5 year lead time.]

DP Forecast
FOSI
What mechanisms provide predictability for O_2?

Mean vertical gradients

\[
O_2^{\text{heave}} = \left(\frac{\partial O_2}{\partial z} \right) \left(\frac{\partial \rho_\theta}{\partial z} \right)^{-1} \rho'_\theta
\]
East-west difference in anomaly generation mechanism

“Ventilation regime”

Correlation: O_2 v. $|PV|$

$\nabla \rho / \nabla z$ low
PV low
O_2 high

Negative PV-O_2 correlation

$PV \approx \left(\frac{f}{\rho} \right) \frac{\partial \rho}{\partial z}$

“Heave regime”

Correlation: O_2 v. density

$\nabla \rho / \nabla z$ high
PV high
O_2 high

Positive PV-O_2 correlation

Negative ρ-O_2 correlation

Vertical compression
Summary

• Thermocline dissolved oxygen concentrations are highly predictable on multi-annual timescales.

• Vertical displacement of isopycnals in response to basin-scale thermocline adjustment explains much of the variance in simulated CalCOFI O_2.

• The “heave” regime of the eastern Pacific contrasts with a “ventilation” regime of the west, indicated by differing correlations with PV.

• Model skill remains a challenge.
Questions?

Matthew Long
Climate & Global Dynamics Laboratory
National Center for Atmospheric Research
mclong@ucar.edu