Predicting ocean oxygen: capabilities and potential

Matthew C. Long & Stephen Yeager Climate and Global Dynamics Laboratory National Center for Atmospheric Research

Oxygen is a fundamental environmental constraint

1

Warming up, turning sour, losing breath*

CMIP5 multi-model global-mean projections

Physical & biological controls on interior oxygen

Graphic credit: M. Long and R. Johnson (NCAR)

Variance-weighted mean period (CESM 1850-control)

$T_x = \sum_k V(f_k, x) / \sum_k f_k V(f_k, x)$

A persistent bias in Earth system models: Extensive OMZs

Thermocline (400–600 m) O₂ distributions

Thermocline oxygen concentrations look to be highly predictable

Anomaly correlation coefficient: O_2 on $\sigma_{\theta} = 26.5$

courtesy of S. Yeager

Thermocline oxygen concentrations look to be highly predictable

Anomaly correlation coefficient: Salinity on $\sigma_{\theta} = 26.5$

courtesy of S. Yeager

North Pacific dissolved oxygen is skillfully predicted

1-5 year lead

ACC

0.50

0.00

-0.25

-0.50

9

O₂ inventory

60°N

45°N

30°N

"Thermocline" := 200–600m mean

30°N

15°N

120°E 140°E 160°E 180° 160°W 140°W 120°W 100°W

$$\frac{\partial O_2}{\partial t} + (\mathbf{u} + \mathbf{u}^*) \cdot \nabla O_2 = \mathcal{D}_{iso}(O_2) + \mathcal{D}_{dia}(O_2) + \mathcal{J}_{bio}(O_2)$$

What mechanisms provide predictability for O₂?

O2 term balance: annual mean

What mechanisms provide predictability for O₂?

O2 term balance: interannual variability (std. dev.)

12

World Ocean Database 2013: Fraction of years sampled (1958-2015)

Model skill in CalCOFI* region: questionable

Thermocline O₂

* California Cooperative Oceanic Fisheries Investigations

Thermocline O₂ in CalCOFI region

Thermocline O₂ tendency

2010

O2 term balance: annual mean

O2 term balance: annual mean

Mean vertical gradients

East-west difference in anomaly generation mechanism

"Ventilation regime"

"Heave regime"

- Thermocline dissolved oxygen concentrations are highly predictable on multi-annual timescales.
- Vertical displacement of isopycnals in response to basin-scale thermocline adjustment explains much of the variance in simulated CalCOFI O₂.
- The "heave" regime of the eastern Pacific contrasts with a "ventilation" regime of the west, indicated by differing correlations with PV.
- Model skill remains a challenge.

Questions?

Matthew Long Climate & Global Dynamics Laboratory National Center for Atmospheric Research mclong@ucar.edu