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Characteristics	of	western	U.S.	mountain	climate	
Remote	mountain	precipitation	(&	snowmelt)	delivers	water	supply	



Climate	index	/	April	1	snow	link:	PDO	&	Niño3	
4-month	&	0-month	lead	FEBRUARY 2002 23M C C A B E A N D D E T T I N G E R

FIG. 12. Most significant (at a 95% confidence level) summer/autumn (Jun–Nov) predictor of
1 Apr snowpack (i.e., PDO and Niño-3 SST). The significance of the predictors was determined
from the r2 resulting from regressions of 1 Apr snowpack with summer/autumn PDO and/or Niño-
3. The size of the symbols indicates the magnitude of the r2 values (the value of a significant r2
is indicated for scale).

Source:	McCabe	and	Dettinger	2002;	Mote	2006	

FIG. 8. Relationships between two climate indices, NPI and PDO, and 1 Apr SWE, over the 1960–2002 period of record. (a), (b)
Correlations are shown as red for negative and blue for positive; circles indicate statistically significant trends, and ! or " indicates
insignificant trends. (c), (d) The trend explained by regression with the index, #SWE$X [see Eq. (3)], in units of cm as in Fig. 5.

1 DECEMBER 2006 M O T E 6217

Fig 8 live 4/C

1941-90	
Predictor:	
June-Nov		
Note:	63%	
show	no	
significance	

1960-2002	
Predictor:		

Oct-Mar	PDO	



Developing	a	western	U.S.	prediction	system	
Scientific	questions	to	ask	

• Why	do	we	have	mountain	precipitation	/	
snow?		

•  How	does	it	vary?		
•  Can	we	predict	it?		
• What	else	are	we	missing?	

•  Are	we	asking	the	right	prediction	
questions?	(For	science?	For	stakeholders?)	



WESTERN	U.S.	SNOWPACK	
PREDICTION	



Current	Research:	GFDL	seasonal	prediction	models	
**Global**	coupled	models	for	regional	applications	

Atmospheric/Land	
Grid	Size	 200	km	 50	km	 25	km	

Ensemble	members	 10	 12	 12	
“Ensemble	members”	provide	individual	solutions	for	the	future	
•  Seasonal	prediction:	initialize	on	the	1st	of	the	month	and	left	to	run	for	12	

months	total	to	provide	a	potential	future	(for	4	seasons)	
•  Collectively	ensembles	provide	a	probabilistic	forecast	of	the	future—a	

likely	solution	but	also	a	range	of	potential	values	and	probabilities	
•  Note:	Our	“seasonal”	model	is	used	to	produce	seasonal	to	multi-seasonal	

(beyond	3	months)	to	decadal	predictions	and	has	been	designed	for	this	
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Climatology	of	western	U.S.	Snowpack	
Model	Initialized	July	1:	8-mon	prediction	vs.	Observed	March	

Source:	Kapnick	et	al.,	PNAS,	2018	
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2012-2015	drought	8-m	predictions	annually	

Resolution	
isn’t	a	magic	
bullet	
	

Source:	Kapnick	et	al.,	PNAS,	2018	
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FLOR    Grid: (a) Regional Prediction Correlations: 1981−2016
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1981-2016	March	prediction	skill	8	months	prior	
March	snowpack	predicted	on	previous	July	1	(Kapnick	et	al.	2018)	
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Why	are	coastal	mnts	difficult	to	predict?	
Severe	Trends?	 Higher	variability?	

Low	

High	

•  A	fundamental	
system	setup	
issue	
(initialization,	
model	
configuration,	
ensemble	size)?	

•  Or	inherently	
unpredictable	at	
8-month	leads?	

Resolution/Physics/Mountain	Range	Scaling?	

25	km	 1	m	

Loss	

Gain	



How	do	we	improve	weather-to-climate	predictions?	
Kapnick	et	al.	2018;	Yang	et	al.	2018	

①  Improve	the	models	(i.e.	physics,	
resolution,	processes)	for	total	records	&	
case	studies.	Increase	ensemble	size	(?)	

200	km 									50km	

②  Improve	initialization	system	
(i.e.	info	to	start	prediction)	

③  Improve	observations	for	model	development,	initialization,	verification	
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Is	California	snowpack	simply	unpredictable	at	8-mon	leads?	
What	problems	can	we	solve	(e.g.	for	leads,	variable,	region)?	
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FIG. 10. The anomaly correlation coefficients between retrospective forecasts and observations for the winter

precipitation anomalies during 1982-2015. a, P1. b, P2. The stippling indicates correlation coefficients signif-

icant at 5% level. The observational data is from PRISM. The ratio of the grid points with positive significant

correlation to the total grid points is 17% and 55% for P1 and P2 respectively.
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Key	takeaways	
•  Snowpack	prediction	skill	exists	8	months	in	advance	in	a	dynamic	

coupled	modeling	system	
–  Prediction	in	this	system	comes	from	the	ocean	state	on	July	1	

(initialization)	&	dynamic	coupled	evolution	of	weather	/	climate	
(prediction	from	the	global	coupled	model	simulating	the	ocean,	
atmosphere,	and	land	as	it	evolves	in	time)	

•  Climate	indices	lack	(or	have	lesser)	prediction	skill	at	8	months	
–  Dynamic	coupled	models	outperform	their	climate	index	counterparts	

&	may	be	necessary	at	longer	time	scales	
•  California	remains	elusive	with	lowest	skill	in	coastal	mountains,	but	we	

have	pathways	to	improve	prediction.	We	can	reframe	our	questions	for	
solvable	scientific	problems	/	stakeholder	needs	

•  The	new	frontier:	At	the	GFDL	we	are	developing	a	next-generation	
prediction	system	(SPEAR)	to	tackle	these	problems.	We	are	also	trying	to	
better	engage	with	stakeholders	and	regional	experts	on	prediction	
problems	
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