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Impacts of climate variability  
on fisheries 

Nye	et	al.	2009	

Distribution	

magnitude of variance of the sea surface temperature (SST).
According to the methodology described by Mueter et al.
(2011), the selected models resulted in 82 different time-series of
future EBS SSTs that range from 7 to 118C (Figure 1).
Projections from these models are treated as plausible future
temperature patterns.

Management scenarios are derived based on the professional
judgement of the authors and informal interviews with members
of the fishing community. Tompkins et al. (2008) highlights the
importance of engaging stakeholders when developing planning
scenarios for responses to climate change. Informal interviews
were done over the course of one year to gain insights of expected
responses to anticipated changes in the economy (shifting fuel
prices, worldwide demand for whitefish, and catch efficiency)
and societal preferences regarding conservation. A qualitative
assessment of the impacts of changes was conducted to identify
seven management scenarios described in Table 1.

Pollock stock status was projected with a model used for
groundfish stocks in US waters off Alaska. This model was
designed to implement the Fishery Management Plan as modified
under Amendment 56 (Anon., 1999). Inputs include estimated
begin-year numbers-at-age in the terminal year (here 2010), age-
specific schedules for selectivity, maturity, natural mortality, and
mean weights for each fishery and for the population at time of
spawning. The time-series of simulated future recruits were com-
puted using two different methods: (i) from predictions of recruit-
ment based on climate (SSTs) via the functional relationship

established by Mueter et al. (2011; Figure 2), and (ii) from the his-
torical patterns of recruitment (i.e. with mean and variance esti-
mated for simulations via the inverse Gaussian distribution;
Figure 3).

For the status quo policy (as applied here), the first step to
determining the catch level in year t required determining Ft, the
fishing mortality as a function of spawning biomass (Bt):

Stock status : Bt/Bmsy . 1

Ft = Fmsy,

Stock status : 0.05 , Bt/Bmsy ≤ 1

Ft = Fmsy(Bt/Bmsy − 0.05)(1 − 0.05)−1,

Stock status : Bt/Bmsy , 0.05

Ft = 0.0,

where Bmsy is a reference biomass for pollock where the unfished
spawning contribution is reduced to 27% of expectation per

Figure 1. Time-series of future SSTs over the EBS based on the
selected 82 climate change models (from Mueter et al., 2011).

Table 1. Comparisons of alternative management strategies evaluated under the two future recruitment scenarios.

Policy
abbreviation Name Effect of modification
Status quo Status quo –
Adj B47% Adjust fishing mortality at stock sizes

.Bmsy

Begin ramping fishing mortality downwards as biomass drops below 1.143 Bmsy

20-year B0% Compute B0 based on recent 20-year
mean recruitment

B20% changes dynamically with recent 20-year period (changing carrying capacity affects
Steller sea lion rule)

wtd B0% Compute B0 weighted by recent
recruitment to spawninga

B20% changes dynamically with recent recruitment and expected contribution to
spawning biomass (changing carrying capacity affects Steller sea lion rule)

Low cap Low cap Limit the maximum level of pollock removals to 1.3 million tonnes
High cap No cap Allow catches to be unconstrained during the periods of high biomass (set TAC ¼ ABC

and ignore 2 million tonne catch limit)
Const F Constant fishing mortality As in policy above, but also ignore any adjustments in fishing mortality rates as stock

drops below target and B20% levels

aComputed as spawning biomass per recruit multiplied by !Rt =
∑25

a= 1
fawaNt−a+ 1,1e−

∑a−1

i= 1
Mi

∑25

a= 1
fawae−

∑a−1

i= 1
Mi

( )−1

(after A’mar et al., 2009).

Figure 2. Summer temperature effect used to model the
relationship between climate change models and pollock
recruitment (from Mueter et al., 2011). The dashed line represents
the estimated functional form and the solid line the assumption
used for the simulations.
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Ianelli	et	al.	2011	

Recruitment	

Bjornsson	et	al.	2007	

Walleye	pollock	

Considering the large investments needed for the on-
growing phase it is important to be able to predict the
growth potential of cod in different geographical lo-
cations. The temperature profile on each location may in
the long run determine to a large extent the compet-
itiveness of the cod farm. It is therefore important to
have a reliable model to predict the potential growth of
cod reared at different geographic locations.

A few years ago, two of the authors developed a
growth model for cod (Björnsson and Steinarsson, 2002).
The model appeared to be accurate at the time but lately it
has become apparent that it tends to underestimate actual
growth rates of cod in commercial farms. One obvious
shortcoming of that model is that it can not accurately
predict how optimal temperature for growth (Topt.G) varies
with weight of cod, particularly for juvenile fish. This
called for a complete revision of the model. The old data
set was revisited and expanded with a series of new
experiments to strengthen the foundation of the model.

2. Materials and methods

2.1. Experiments

The methodology applied in the old data set has been
described in earlier publications (Björnsson et al., 2001;
Björnsson and Steinarsson, 2002) and thus only the new
data set will be dealt with here. The experiments were
carried out at the Mariculture Laboratory of the Marine
Research Institute at Grindavík in Southwest Iceland.
The seawater supply of the laboratory, obtained from a
50-m-deep well, has a constant temperature (7 °C) and
salinity (32‰).

Cod in the largest size-class (Experiment G) were
hatched in April 2004 whereas cod from all other size-
classes were hatched in April 2005 from eggs collected
from fish caught off the southwest coast of Iceland,
fertilized onboard and brought to the laboratory. The
larvae were fed on rotifers and Artemia until weaned on
dry feed. During the larval period the temperature was
gradually increased from 8 to 12 °C. The initial mean
weights of the experimental fish were 1, 4, 9, 37, 96, 301

and 769 g. The cod were reared in groups of 100 fish per
tank, except 75–88 for the largest fish. The three smallest
size-classes were reared at six temperatures (0, 4, 8, 12,

Table 1
The proximate composition of the dry feed according to the manufacturer's specifications (Danafeed Ltd. and Fódurblandan Ltd.)

Experiment Feed type Protein Fat Carbohydrates Fibre Ash Water

A Dan-Ex 0.5/1.0 mm 62 13 7.0 0.8 11.6 N/A
B Dan-Ex 1.3 mm 62 13 7.0 0.8 11.6 N/A
C FB 15/53 2 mm 53 15 11.5 1.0 12.0 9.0
D FB 15/53 3 mm 53 15 11.5 1.0 12.0 9.0
E FB 15/53 4 mm 53 15 11.5 1.0 12.0 9.0
F FB 15/53 8 mm 53 15 11.5 1.0 12.0 9.0
G FB 18/50 12 mm 53 15 11.5 1.0 12.0 9.0

Fig. 1. Relationship between specific growth rate (G) and temperature
for seven size-classes of cod W=2, 7 and 14 g (A); W=57, 143, 373
and 1050 g (B). Data fitted with a third order polynomial (see Table 2).
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Baumgartner	et	al.	1992	



The demise of cannery row 
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	 In Maine, More Lobsters Than They Know What to Do With 
Price down to a 40-year low 

	 New	York	Times,	June	2012	

http://www.nytimes.com/2012/07/29/us/in-maine-fishermen-struggle-with-glut-of-lobsters.html?mcubz=3	



	 West coast fisheries hit hard by poor 
ocean conditions 

	 Oregon	Public	Broadcasting	News	,	October	2016				

http://www.opb.org/news/article/west-coast-fisheries-hit-hard-by-poor-ocean-conditions/	
	



Fisheries decisions across time scales 
are impacted by climate effects 

S2S	to	S2D		

Tommasi	et	al.,	2017;	Progress	in	Oceanography	

Aquaculture	
•  Extreme	weather	responses	
•  Stocking/harvest	time	
	
Fishing	Industry	
•  Labor	and	gear	needs	
•  Where/when/what	to	fish	for	
	
Coastal	Management	
•  Beach	closures	(e.g.	HAB’s,	jellies)	
	
Fisheries	Management	
•  Fisheries	closures	to	reduce	

unwanted	and	incidental	capture	
•  Provision	of	catch	advice	
•  Rebuilding	plans	



But fisheries decisions rarely include 
climate or ecosystem effects 

Skern-Mauritzen	et	al.,	2016;	Fish	and	Fisheries	

• 	After	a	review	of	1200	stocks	worldwide,	only	2%	
include	environmental	drivers	in	tactical	management	
decisions		



Challenges to integration of environmental 
effects into fisheries management 

• 		No	skillful	forecasts	of	environmental	conditions	at	the	
scale	at	which	the	fish	operate	and	are	managed	
• 	Emergent	effects	of	climate	on	marine	ecosystems	are	
complex	
• 	Limited	availability	of	time	series	for	model	
development	and	validation	

Tommasi	et	al.,	2017;	Progress	in	Oceanography	



Challenges to integration of environmental 
effects into fisheries management 

• 		No	skillful	forecasts	of	environmental	conditions	at	the	
scale	at	which	the	fish	operate	and	are	managed	
• 	Emergent	effects	of	climate	on	marine	ecosystems	are	
complex	
• 	Limited	availability	of	time	series	for	model	
development	and	validation	

But	things	are	changing…	
Tommasi	et	al.,	2017;	Progress	in	Oceanography	



Large Marine Ecosystems (LMEs) produce 
80% of global annual fish catch 



Anomaly correlation coefficients: 
• above 0 at 5% level 
• above persistence at 10% level with ACC > 0.5 
• above persistence at 10% level with ACC < 0.5.

Skillful seasonal SST predictions at fishery 
relevant scales 

Stock	et	al.,	2015;	Progress	in	Oceanography;	Hervieux	et	al.,	2017;	Jacox	et	al.,	2017;	Climate	Dynamics	

Based	on	the	Anomaly	
correlation	coefficient	
(ACC)	between	the	
NMME	Ensemble	mean	
forecast	SST	anomalies	
and	OISST	observations	
from	hindcasts	during	
1982-	2009	

California	Current	LME	
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Mechanisms of Predictability for the California 
Current  

Jacox	et	al.,	2017;	Climate	Dynamics	

Forecast	skill	above	persistence	=	ACC	of	the	dynamical	forecast	minus	the	ACC	of	the	persistence	forecast		
Persistence	+	ENSO	=	a	statistical	forecast	based	on	California	Current	and	Nino	3.4	SST	anomalies	in	the	
month	prior	to	initialization	

On the skill of seasonal sea surface temperature forecasts in the California Current System…

1 3

persistence forecast. The statistical forecast based on persis-
tence and ENSO variability has a seasonal cycle of forecast 
skill that is qualitatively similar to that for dynamical fore-
casts. However, the NMME mean performs better for Janu-
ary–May forecasts, largely due to added skill for long lead 
(>6 month) forecasts initialized in spring, and the statisti-
cal forecast performs slightly better for October–December 
forecasts, largely due to added skill for long lead forecasts 
initialized in winter (Fig. 4).

3.3  Mechanisms of SST predictability

The findings of Sects. 3.1 and 3.2 highlight two key points 
about seasonal forecast skill in the CCS: (1) dynamical skill 
above persistence is concentrated in forecasts of the first 
half of the year, particularly January–April, and (2) skill 
above persistence derives largely, though not entirely, from 
a predictable regional manifestation of ENSO variability. 
We now turn our attention to elucidating the mechanisms 
through which dynamical forecast systems capture ENSO-
related predictability in the CCS. In order to do so, we 
focus on a single member of the NMME, CanCM4, which 
is arguably the best performing model for CCS hindcasts 
(Fig. 2) and serves as a test case to explore in more detail 
the dynamics governing predictability.

The strong relationship of skill above persistence to 
ENSO variability (Sect.  3.2) suggests that years of large 
ENSO signals (i.e., El Niño and La Niña events) may con-
tribute disproportionately to seasonal forecast skill. Indeed, 
when hindcast skill above persistence is partitioned into the 
years following medium to strong ENSO events [i.e., when 
the 3-month running mean of Niño 3.4 SST anomalies, also 
termed the Oceanic Niño Index (ONI), exceeds a magni-
tude of 1] and the years associated with neutral or weakly 

positive/negative ENSO conditions (|ONI|<1), we find that 
forecast skill above persistence is associated almost entirely 
with the former (Fig.  6). In other words, the dynamical 
forecast skill above persistence for 28-year hindcasts is 
largely captured by using dynamical forecasts for the 10 
strongest ENSO events (1983, 1987, 1988, 1989, 1992, 
1998, 1999, 2000, 2003, 2008) and persistence forecasts for 
the other 18 years. This finding is consistent with previous 
studies that identify ENSO variability as the primary driver 
of seasonal predictability in air temperature and precipita-
tion anomalies over the continental United States (Barnett 
and Preisendorfer 1987; Quan et  al. 2006). However, it 
should be noted that there is residual skill in the dynamical 
forecast beyond that generated during ENSO events, par-
ticularly for long lead forecasts (cf., left and middle panels 
of Fig. 6).

Having determined that SST forecast skill above persis-
tence is mostly constrained to forecasts of the late winter/
spring in moderate to strong ENSO events, we examine the 
regional forcing mechanisms driving SST anomalies dur-
ing those periods. Tropical SST variability during ENSO 
events modifies north Pacific SST anomalies through 
atmospheric teleconnections [i.e., the atmospheric bridge 
(Alexander et  al. 2002)]. Using global mixed layer mod-
els, Alexander et  al. (2002) found that the atmospheric 
bridge drives basin-scale SST anomalies primarily through 
the net surface heat flux, with a weaker contribution from 
wind-driven Ekman transport. However, they found the 
contributions of surface heat flux and wind stress to be of 
comparable magnitude in the nearshore region of the CCS, 
where wind-driven coastal upwelling exerts significant 
control over ocean temperature variability. Regional stud-
ies confirm the importance of wind stress anomalies for 
driving environmental change in the CCS during ENSO 

Fig. 4  Forecast skill above persistence (e.g., ACC of dynamical fore-
cast minus ACC of persistence forecast) for left the NMME ensem-
ble mean forecast, middle a statistical forecast based on persistence 
and tropical SST anomalies, and right the difference between them. 
The statistical forecast is constructed using a multiple linear regres-
sion, where the observed SST anomaly at a given initialization month 

and lead time is fit as a function of both the CCS and Niño 3.4 SST 
anomalies the month prior to forecast initialization. For example, a 
statistical forecast of June initialized in February (4-month lead time) 
would fit the observed June SST anomalies as a function of the CCS 
and Niño 3.4 SST anomalies in January



Predictions at  multi-annual scales 

Tommasi	et	al.,	2017;	Frontiers	in	Marine	Science	

Skill	for	the	
probabilistic	
forecast	of	SST	
over	the	next	
1-3	years	being	
in	the	upper	
(warm)	tercile	
based	on	
reforecasts	from	
1965-2011	Forecast	Accuracy	=	proportion	correct	of	

a	yes/no	forecast	of	an	event		
		

Brier	Score	=	estimate	of	the	mean	
square	error	of	the	probabilistic	
forecast		
	
		



Skillful predictions at  multi-annual 
scales 

Tommasi	et	al.,	2017;	Frontiers	in	Marine	Science	

Except	for	North	Atlantic	LMEs,	
skill	was	due	to	the	predictable	
signature	of	radiative	forcing	
changes	over	the	50	year	time	
period	rather	than	prediction	of	
evolving	modes	of	climate	
variability	

Brier	Skill	Score	=	Negative	scores	indicate	no	additional	skill	as	compared	to	an	uninitialized	forecast	
		



Skillful SST seasonal prediction at a fishery relevant 
scale  

 
Can incorporation of seasonal climate forecasts 

make marine ecosystems decisions more effective? 



Pacific sardine recruitment depends on 
SST 

Finally, we applied a model reduction routine based on the
generalized cross-validation and partial F tests to find the best
possible set of predictors. In addition, we performed a cross vali-
dation analysis by fitting the set of final models to a randomly
selected subset of the data (Picard and Cook 1984), i.e., amounting
to 75% of the observations, and assessed the predictive accuracy of
the models by comparing the observed values with the predicted
R estimates for the remaining subset. The cross-validation analysis
was repeated 1000 times, i.e., with a new set of randomdraws each
time, to assess the range of uncertainty associated with the pre-
dictions. All statistical analyses were conducted using the
R software (www.r-project.org).

Results
After model fitting, annual average SST of the CalCOFI area was

found the most significant explanatory variable for R and R/S
(Table 2). Although other variables were statistically significant,
e.g., SST at the SIO pier, CalCOFI SST was the best single explana-
tory variable of R variability, demonstrating the lowest general-
ized cross-validation and highest degree of explained variance
overall (80.5% and 73.7% for R and R/S, respectively). In addition to
the SST effect, SSB was found significant for both R and R/S
(Table 3). Furthermore, note that the lack of correlation between
SST and SSB (p = 0.17, n = 28) limits the risk of confounding effects

Fig. 3. The effects of predictors on recruitment with confidence intervals (grey) and residuals, i.e., years with sea surface temperature (SST) above
and belowmean are shown in black and grey, respectively, from the final generalized additive models, illustrating nonlinear relationships between
sardine recruitment and recruitment success at age 2 and spawning stock biomass (SSB) (a, b), as well as annual average SST (c, d). Observed (circles)
and modelled recruitment (e; black) and recruitment success (f; black) with upper and lower 95% confidence intervals (grey).
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Lindegren	and	Checkley,	2013;	Canadian	Journal	of	Fisheries	and	Aquatic	Sciences	



Seasonal forecasts to improve catch 
advice for California sardine 
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•  Skillful	SST	forecast	generated	higher	stock	biomass	and	yield	
•  Lower	risk	of	collapse	if	combined	with	existing	harvest	cutoff	

Tommasi	et	al.,	2017;	Ecological	Applications	



Seasonal forecasts to reduce bycatch in the 
Australian east coast eastern tuna and billfish 

fishery 

Hobday	et	al.	2011,	Canadian	Journal	of	Fisheries	and	Aquatic	Sciences	

• 	Seasonal	forecasts	of	probabilistic	
Southern	Bluefin	Tuna	distribution	
zones.		
• 	Skillful	up	to	5	months	in	advance	
• 	Reduced	the	need	for	managers	
to	set	up	large	area	closures	while	
still	meeting	bycatch	reduction	
management	goals	



Other current applications of seasonal 
forecasts in marine ecosystems decisions 

• 	Coral	reef	management,	Spillman	et	al.	2011,	Eakin	et	al.	2012	
• 	Prawn	or	salmon	aquaculture	farm	management	in	Australia,	Spillman	et	al.	
2014,	Spillman	et	al.	2015	
• 	Economic	efficiency	of	Great	Australian	Bight	tuna	fishery,	Eveson	et	al.	2015	
• 	Control	of	illegal	tuna	fisheries	in	Indonesia,	Gehlen	et	al.	2015	
• 	Sardine	spatial	distribution,	Kaplan	et	al.	2016,	Siedlecki	et	al.	2016	
• 	Forecast	of	the	start	of	the	lobster	fishing	season	in	the	Gulf	of	Maine,	Mills	et	
al.	2017	

Tommasi	et	al.,	2017;	Progress	in	Oceanography	



Future Research Needs 
• 	Reduction	in	climate	model	bias	through	
improvements	in	model	formulation	and	initialization	



Future Research 
• 	Verify	predictability	of	ecosystem	relevant	variables	
at	decision	relevant	scales		beyond	SST	

In hot water: Columbia's sockeye salmon 
face mass die-off 
Warm water temperatures have made life 'grim' for 
sockeye salmon in the Pacific Northwest 
	

River	flow	-	Check	out	B4-04	to	B4-07		
Sea	Ice	–	B5-07,	B6-07,	B6-08	



Future Research 
• 	Develop	biogeochemical	prediction	capabilities	

	 SEACHANGE Oyster dying as coast is hit hard 
	 A Washington family opens a hatchery in Hawaii to escape lethal waters. 

Check	out	B6-02	to	B6-06	Talks	



Fish Catch Prediction Skill 

Gulf	of	
Alaska	

California	
Current	

Agulhas	
Current	

A

B

C

Annual mean fish catch 

Slide	courtesy		of	
Jong-yeon	Park	
Check	out	his	
talk	–	B6-03	



Gulf	of	
Alaska	

California	
Current	

Agulhas	
Current	

Fish Catch Prediction Skill 

Lead time: 1-2 year 

Lead time: 0-1 year 

Correlation coefficients between reported 
and predicted annual fish catch 

Slide	courtesy		of	
Jong-yeon	Park	
Check	out	his	
talk	–	B6-03	



3.2. Transient Climate Response
An atmospheric CO2 doubling experiment (transient climate response) shows that there is an enhanced
warming exclusive to the Northwest Atlantic Ocean in the highest-resolution global climate model CM2.6
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Figure 4. (continued)
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Figure 5. Northwest Atlantic Ocean and Continental Shelf change in (a) bottom temperature, (b) surface salinity, and (c) bottom salinity after a doubling of global atmospheric CO2

among four climate models of varying ocean and atmosphere resolution. Climate model responses are based on the same experiments and time periods as in Figure 4.
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3.2. Transient Climate Response
An atmospheric CO2 doubling experiment (transient climate response) shows that there is an enhanced
warming exclusive to the Northwest Atlantic Ocean in the highest-resolution global climate model CM2.6
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Figure 4. (continued)
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Figure 5. Northwest Atlantic Ocean and Continental Shelf change in (a) bottom temperature, (b) surface salinity, and (c) bottom salinity after a doubling of global atmospheric CO2

among four climate models of varying ocean and atmosphere resolution. Climate model responses are based on the same experiments and time periods as in Figure 4.
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Future 
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Future 
Research 

• 	Improve	climate	
predictability	at	
fisheries	relevant	
regional	scales	through	
the	development	of	
dynamical	downscaling	
frameworks		
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Anomaly	correlation	coefficient	(ACC)	between	dynamically	
downscaled	J-SCOPE	forecasts	(forced	by	CFS	global	

prediction	system)	and	reanalysis.	



Future 
Research • 	Take	advantage	of	dynamical	forecasts	systems	(e.g.	NOAA-GFDL	

FLOR)	to	anticipate	changes	in	hydrographic	conditions	in	estuaries	
using	empirical	statistical	downscaling	(NOAA-GFDL	FUDGE)	

Taboada,	Tommasi	et	al.	in	preparation	
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Thank you! 
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