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Motivations 
v  A single deterministic rainfall forecast is not sufficient for predicting seasonal Indian 

summer monsoon rainfall (ISMR) which is characterized by large variability. The user 
community should be given probabilistic forecasts that convey the inherent uncertainty 
within the prediction.  

v  Though a plethora of study exists to make a deterministic model for predicting ISMR, only 
a few studies have described the probabilistic prediction system.  

Deterministic	Model	 Probabilistic	Model	

v Common approach to make such probabilistic forecast 
        1) Counting ensemble members of GCMs (Uncalibrated). 
        2) Combine (average, multiple linear regression) multiple GCMs (Uncalibrated) and       

 convert in to probabilistic space using Gaussian distribution.  



Objective 
Evaluation of a calibrated probabilistic forecast system using NMME models in a 
non-Gaussian framework for ISMR. 
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NMME datasets in IRI DL 
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/	

Model	lists	
	
•  CMC1-CanCM3	
•  CMC2-CanCM4	
•  NCEP-CFSv2	
•  NCAR-CESM1	
•  COLA-RSMAS-CCSM4	
•  NASA-GMAO-062012	
•  GFDL-CM2p1-aer04	
•  GFDL-CM2p5-FLOR-A06	
•  GFDL-CM2p5-FLOR-B01	
	
Observations	
•  IMD’s	gridded	data	

The lead-1 (using initial conditions of May) hindcast runs for mean rainfall of JJAS spanning 
over 1982-2010 is used. 
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Logistic  regression  (LR),  a  nonlinear 
regression method where probability itself 
can be considered as the predictand rather 
than a measurable physical quantity, is an 
alternative model for Gaussian approach.  

Logistic	Regression	
Logistic	regression	is	well	famous	method	to	make	
probability	forecast		

portal. These EPS have different resolutions (from 125 km at the Equator with 40 vertical levels77

for CMA to 16/32 km and 91 vertical levels for ECMWF), ensemble members (from 4 to 51 for78

CMA and ECMWF respectively) and reforecasts length (between 44 to 60 days lead from CFS to79

CMA) depending on the Global Producing Center (GPC) where they are issued as indicated in Ta-80

ble 1. In particular, ECMWF is the only model for which reforecasts are generated on the fly twice81

a week (on Mondays and T hursdays), while those from NCEP and CMA are generated every day.82

We thus consider in the following weekly cumulated precipitation based on ECMWF Mondays83

issuances from June 2015 to March 2016. Subsequently, S2S data was spatially interpolated onto84

the GPCP 1-degree horizontal grid.85

b. Extended Logistic Regression model86

Distributional or quantile regressions are well suited to probability forecasting, i.e. when the87

predictand is a probability rather than a measurable physical quantity, allowing the conditional88

distribution of a response variable to be derived given a set of explanatory predictors. In this89

context, logistic regression can be seen as a reduced form in which the predictand is a quantile q90
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Where	p	is	the	(cumulative)	probability	of	not	exceeding	
the	quantile	q		
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This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston
and Smith, 2003; Stephenson et al., 2005), and these and
other ensemble-MOS methods have been compared in
an idealized setting in Wilks (2006b). Wilks and Hamill
(2007) examined the performance of the best of these
methods using ensembles taken from the GFS refore-
cast dataset (Hamill et al., 2006), concluding that non-
homogeneous Gaussian regression (Gneiting et al., 2005)
generally performed best for medium-range temperature
forecasts, and that logistic regression, a conventional sta-
tistical method, was generally best for daily temperature
forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic
regressions have been found to perform well, notable dif-
ficulties arise from the conventional approach to deriving
these equations. Specifically, separate prediction equa-
tions are conventionally derived to predict probabili-
ties corresponding to different predictand thresholds. For
example, different logistic regression equations would
generally be used to forecast probabilities that future pre-
cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,
even though the same predictor variables (which could
be, for example, ensemble mean and ensemble standard
deviation) might be used in each of the forecast equa-
tions. One problem with this approach is that probabili-
ties for intermediate predictand thresholds (e.g. 15 mm
in the above example) must be interpolated from the
finite collection MOS equations. In addition, fitting sepa-
rate equations for different thresholds requires estimation
of a relatively large number of regression parameters in
total, which may lead to poor estimates unless the avail-
able training sample is quite large. However, the most
problematic consequence of separate MOS equations for
different predictand thresholds is that forecasts derived
from the different equations are not constrained to be
mutually consistent. For example, because of sampling
variations the forecast probability for precipitation at or
below 20 mm may be smaller than the forecast probabil-
ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-
ing the logistic regression structure to allow prediction of
probabilities for all thresholds simultaneously, by includ-
ing the predictand threshold itself as one of the regression
predictors. In addition to providing smoothly-varying
forecast probabilities for any and all predictand thresh-
olds, the approach requires fitting substantially fewer
parameters as compared to many separate logistic regres-
sions, and ensures that nonsense negative probabilities
cannot be produced. This kind of extension to ordinary
logistic regression is not a new concept, and indeed is
an instance of the well-known statistical approach called
generalized linear modeling (McCullagh and Nelder,
1989). Section 2 outlines use of logistic regression in
the context of MOS forecasts, and the extension pro-
posed here. Section 3 describes the ensemble forecast
data used to illustrate the procedure, which are the same
GFS reforecasts (Hamill et al., 2006) used by Wilks and
Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-
tional single-integration dynamical forecasts. Section 4
presents representative forecast performance results, and
Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that
is well suited to probability forecasting, i.e. situations
where the predictand is a probability rather than a mea-
surable physical quantity. Denoting as p the probability
being forecast, a logistic regression takes the form:

p = exp[f (x)]
1 + exp[f (x)]

(1)

where f (x) is a linear function of the predictor variables,
x,

f (x) = b0 + b1x1 + b2x2 + · · · + bKxK (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
data the predictand values are binary (i.e. 0 or 1), so
that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been
in the statistical post-processing of ensemble forecasts of
continuous predictands such as temperature or precipita-
tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks
and Hamill, 2007), for which the forecast probabilities
pertain to the occurrence of the verification, V , above or
below a prediction threshold corresponding a particular
data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,
x1, is generally the ensemble mean, and to the extent that
ensemble spread provides significant predictive informa-
tion a second predictor x2 may involve ensemble standard
deviation, either alone (Hamill et al., 2008) or multiplied
by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
post-processing by fitting separate equations for selected
predictand quantile thresholds. For example, consider
probability forecasts for both the lower tercile (the data
value defining the boundary between the lower third and

Copyright © 2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
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the remainder of a distribution), q1/3, and upper tercile,
q2/3, of the climatological distribution of a predictand.
The two threshold probabilities, p1/3 = Pr {V ≤ q1/3)
and p2/3 = Pr {V ≤ q2/3) would be forecast using the
two logistic regression functions ln[p1/3/(1 − p1/3)] =
f1/3(x) and ln[p2/3/(1 − p2/3)] = f2/3(x). Unless the
regression functions f1/3(x) and f2/3(x) are exactly par-
allel (i.e. they differ only with respect to their intercept
parameters, b0) they will cross for some values of the pre-
dictor(s) x, leading to the nonsense result of p1/3 > p2/3,
implying Pr {q1/3 < V < q2/3} < 0. Other problems with
this approach are that estimating probabilities correspond-
ing to threshold quantiles for which regressions have not
been fitted requires some kind of interpolation, yet fitting
many prediction equations requires that a large number
of parameters be estimated.

All of these problems can be alleviated if a well-
fitting regression can be estimated simultaneously for all
forecast quantiles. A potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(q) of the threshold quantile q, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

p(q) = exp[f (x) + g(q)]
1 + exp[f (x) + g(q)]

(5)

or,

ln
[

p(q)

1 − p(q)

]
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
b0

∗(q) increase monotonically with the threshold quan-
tile, q:

ln
[

p(q)

1 − p(q)

]
= b0 + g(q) + b1x1 + b2x2 + · · · + bKxK

= b∗
0(q) + b1x1 + b2x2 + · · · + bKxK (7)

The question from a practical perspective is whether
a functional form for g(q) can be specified, for which
Equation (5) provides forecasts of competitive quality to
those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same
as those used in Wilks and Hamill (2007). Ensemble
forecasts have been taken from the Hamill et al. (2006)
reforecast dataset, which contains retrospectively recom-
puted, 15-member ensemble forecasts beginning in Jan-
uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-
izontal resolution) version of the U.S. National Centers
for Environmental Prediction Global Forecasting Model
(GFS) (Caplan et al., 1997). Precipitation forecasts for
days 6–10 were aggregated to yield medium-range
ensemble forecasts for this lead time, through Febru-
ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast
precipitation at 19 U.S. first-order National Weather Ser-
vice stations: Atlanta, Georgia (ATL); Bismarck, North
Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,
New York (BUF); Washington, DC (DCA); Denver,
Colorado (DTW); Great Falls, Montana (GTF); Los
Angeles, California (LAX); Miami, Florida (MIA); Min-
neapolis, Minnesota (MSP); New Orleans, Louisiana
(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona
(PHX); Seattle, Washington (SEA); San Francisco, Cali-
fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,
Missouri (STL). These subjectively chosen stations pro-
vide reasonably uniform and representative coverage of
the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-
cipitation were made for the seven climatological quan-
tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33
(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90
(upper decile) and q0.95 (95th percentile); estimated using
the full 26 year observation data set. The verification
data were constructed from running 5-day totals of the
midnight-to-midnight daily precipitation accumulations.
The climatological quantiles were tabulated locally, both
by forecast date and individually by verifying station, in
order to avoid artificial skill deriving from correct ‘fore-
casting’ of variations in climatological values (Hamill and
Juras, 2006). For many locations and times of year, two
or more of these seven quantiles of 5-day accumulated
precipitation are zero, and in these cases only the sin-
gle zero quantile corresponding to the largest probability
was used in regression fitting and verification of fore-
casts. For example, if 25% of the climatological 5-day
precipitation values for a particular location and date are
zero, then both q0.05 and q0.10 are equal to 0 mm, but
only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast
equations were fitted using 1, 2, 5, 15, and 25 years
of training data, and evaluated using cross validation
so that all forecasts are out-of-sample. Separate forecast
equations were fitted for each day of the 26 year data
period, using a training-data window of ± 45 days around
the forecast date. To the extent possible, training years
were chosen as those immediately preceding the year
omitted for cross validation, and to the extent that this
was not possible the nearest subsequent years were used.
For example, equations used to forecast from 1 March,
1980 using 1 year of training data were fitted using data
from 15 January through 15 April, 1979.

These procedures were followed both for individual
logistic regressions, Equation (1), and the unified formu-
lation in Equation (5), although as noted above only one
quantile corresponding to zero accumulated precipitation
was forecast and verified in any one instance. Only a sin-
gle ensemble predictor, the square-root of the ensemble
mean, was used in the function f (x):

f (x) = b0 + b1

√
xens (8)

Copyright © 2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
DOI: 10.1002/met

GFS Day 6–10 Precip 
Forecast for Minneapolis  

28 Nov – 2 Dec 2001  

Wilks (2009) (x) (x)

Extended Logistic Regression (ELR)

Limitations:	
v  Probabilities of different categories estimated by fitting separate 
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collection of threshold probabilities rather than full forecast probability 
distributions. 

v  However, the most problematic consequence of separate equations for 
different predictand thresholds is that forecasts derived from the 
different equations are not constrained to be mutually consistent.  
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This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston
and Smith, 2003; Stephenson et al., 2005), and these and
other ensemble-MOS methods have been compared in
an idealized setting in Wilks (2006b). Wilks and Hamill
(2007) examined the performance of the best of these
methods using ensembles taken from the GFS refore-
cast dataset (Hamill et al., 2006), concluding that non-
homogeneous Gaussian regression (Gneiting et al., 2005)
generally performed best for medium-range temperature
forecasts, and that logistic regression, a conventional sta-
tistical method, was generally best for daily temperature
forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic
regressions have been found to perform well, notable dif-
ficulties arise from the conventional approach to deriving
these equations. Specifically, separate prediction equa-
tions are conventionally derived to predict probabili-
ties corresponding to different predictand thresholds. For
example, different logistic regression equations would
generally be used to forecast probabilities that future pre-
cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,
even though the same predictor variables (which could
be, for example, ensemble mean and ensemble standard
deviation) might be used in each of the forecast equa-
tions. One problem with this approach is that probabili-
ties for intermediate predictand thresholds (e.g. 15 mm
in the above example) must be interpolated from the
finite collection MOS equations. In addition, fitting sepa-
rate equations for different thresholds requires estimation
of a relatively large number of regression parameters in
total, which may lead to poor estimates unless the avail-
able training sample is quite large. However, the most
problematic consequence of separate MOS equations for
different predictand thresholds is that forecasts derived
from the different equations are not constrained to be
mutually consistent. For example, because of sampling
variations the forecast probability for precipitation at or
below 20 mm may be smaller than the forecast probabil-
ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-
ing the logistic regression structure to allow prediction of
probabilities for all thresholds simultaneously, by includ-
ing the predictand threshold itself as one of the regression
predictors. In addition to providing smoothly-varying
forecast probabilities for any and all predictand thresh-
olds, the approach requires fitting substantially fewer
parameters as compared to many separate logistic regres-
sions, and ensures that nonsense negative probabilities
cannot be produced. This kind of extension to ordinary
logistic regression is not a new concept, and indeed is
an instance of the well-known statistical approach called
generalized linear modeling (McCullagh and Nelder,
1989). Section 2 outlines use of logistic regression in
the context of MOS forecasts, and the extension pro-
posed here. Section 3 describes the ensemble forecast
data used to illustrate the procedure, which are the same
GFS reforecasts (Hamill et al., 2006) used by Wilks and
Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-
tional single-integration dynamical forecasts. Section 4
presents representative forecast performance results, and
Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that
is well suited to probability forecasting, i.e. situations
where the predictand is a probability rather than a mea-
surable physical quantity. Denoting as p the probability
being forecast, a logistic regression takes the form:

p = exp[f (x)]
1 + exp[f (x)]

(1)

where f (x) is a linear function of the predictor variables,
x,

f (x) = b0 + b1x1 + b2x2 + · · · + bKxK (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
data the predictand values are binary (i.e. 0 or 1), so
that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been
in the statistical post-processing of ensemble forecasts of
continuous predictands such as temperature or precipita-
tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks
and Hamill, 2007), for which the forecast probabilities
pertain to the occurrence of the verification, V , above or
below a prediction threshold corresponding a particular
data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,
x1, is generally the ensemble mean, and to the extent that
ensemble spread provides significant predictive informa-
tion a second predictor x2 may involve ensemble standard
deviation, either alone (Hamill et al., 2008) or multiplied
by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
post-processing by fitting separate equations for selected
predictand quantile thresholds. For example, consider
probability forecasts for both the lower tercile (the data
value defining the boundary between the lower third and
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the remainder of a distribution), q1/3, and upper tercile,
q2/3, of the climatological distribution of a predictand.
The two threshold probabilities, p1/3 = Pr {V ≤ q1/3)
and p2/3 = Pr {V ≤ q2/3) would be forecast using the
two logistic regression functions ln[p1/3/(1 − p1/3)] =
f1/3(x) and ln[p2/3/(1 − p2/3)] = f2/3(x). Unless the
regression functions f1/3(x) and f2/3(x) are exactly par-
allel (i.e. they differ only with respect to their intercept
parameters, b0) they will cross for some values of the pre-
dictor(s) x, leading to the nonsense result of p1/3 > p2/3,
implying Pr {q1/3 < V < q2/3} < 0. Other problems with
this approach are that estimating probabilities correspond-
ing to threshold quantiles for which regressions have not
been fitted requires some kind of interpolation, yet fitting
many prediction equations requires that a large number
of parameters be estimated.

All of these problems can be alleviated if a well-
fitting regression can be estimated simultaneously for all
forecast quantiles. A potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(q) of the threshold quantile q, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

p(q) = exp[f (x) + g(q)]
1 + exp[f (x) + g(q)]

(5)

or,

ln
[

p(q)

1 − p(q)

]
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
b0

∗(q) increase monotonically with the threshold quan-
tile, q:

ln
[

p(q)

1 − p(q)

]
= b0 + g(q) + b1x1 + b2x2 + · · · + bKxK

= b∗
0(q) + b1x1 + b2x2 + · · · + bKxK (7)

The question from a practical perspective is whether
a functional form for g(q) can be specified, for which
Equation (5) provides forecasts of competitive quality to
those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same
as those used in Wilks and Hamill (2007). Ensemble
forecasts have been taken from the Hamill et al. (2006)
reforecast dataset, which contains retrospectively recom-
puted, 15-member ensemble forecasts beginning in Jan-
uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-
izontal resolution) version of the U.S. National Centers
for Environmental Prediction Global Forecasting Model
(GFS) (Caplan et al., 1997). Precipitation forecasts for
days 6–10 were aggregated to yield medium-range
ensemble forecasts for this lead time, through Febru-
ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast
precipitation at 19 U.S. first-order National Weather Ser-
vice stations: Atlanta, Georgia (ATL); Bismarck, North
Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,
New York (BUF); Washington, DC (DCA); Denver,
Colorado (DTW); Great Falls, Montana (GTF); Los
Angeles, California (LAX); Miami, Florida (MIA); Min-
neapolis, Minnesota (MSP); New Orleans, Louisiana
(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona
(PHX); Seattle, Washington (SEA); San Francisco, Cali-
fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,
Missouri (STL). These subjectively chosen stations pro-
vide reasonably uniform and representative coverage of
the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-
cipitation were made for the seven climatological quan-
tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33
(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90
(upper decile) and q0.95 (95th percentile); estimated using
the full 26 year observation data set. The verification
data were constructed from running 5-day totals of the
midnight-to-midnight daily precipitation accumulations.
The climatological quantiles were tabulated locally, both
by forecast date and individually by verifying station, in
order to avoid artificial skill deriving from correct ‘fore-
casting’ of variations in climatological values (Hamill and
Juras, 2006). For many locations and times of year, two
or more of these seven quantiles of 5-day accumulated
precipitation are zero, and in these cases only the sin-
gle zero quantile corresponding to the largest probability
was used in regression fitting and verification of fore-
casts. For example, if 25% of the climatological 5-day
precipitation values for a particular location and date are
zero, then both q0.05 and q0.10 are equal to 0 mm, but
only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast
equations were fitted using 1, 2, 5, 15, and 25 years
of training data, and evaluated using cross validation
so that all forecasts are out-of-sample. Separate forecast
equations were fitted for each day of the 26 year data
period, using a training-data window of ± 45 days around
the forecast date. To the extent possible, training years
were chosen as those immediately preceding the year
omitted for cross validation, and to the extent that this
was not possible the nearest subsequent years were used.
For example, equations used to forecast from 1 March,
1980 using 1 year of training data were fitted using data
from 15 January through 15 April, 1979.

These procedures were followed both for individual
logistic regressions, Equation (1), and the unified formu-
lation in Equation (5), although as noted above only one
quantile corresponding to zero accumulated precipitation
was forecast and verified in any one instance. Only a sin-
gle ensemble predictor, the square-root of the ensemble
mean, was used in the function f (x):

f (x) = b0 + b1

√
xens (8)
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GFS Day 6–10 Precip 
Forecast for Minneapolis  

28 Nov – 2 Dec 2001  

Wilks (2009) (x) (x)

Extended Logistic Regression (ELR)

Extending	Logistic	Regression:	
	v Extending LR (ELR) by including the predictand threshold as an 
additional  predictor (link function g itself function of the quantile  q), 
allows the derivation of full predictive distributions to avoid the problem of 
potentially incoherent forecast probabilities (Wilks,2009).  

v Cumulative probability for a smaller predictand threshold cannot  be 
larger than the probability for a larger threshold. 
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cumulated amounts, and the fact that GCMs tend to have very few non-rainy days compared to114

observation due to their tendency to simulate too many rainfall events with intensities overall too115
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Wilks,	D.,	2009:	Extending	logistic	regression	to	provide	full-probability-distribution	MOS	fore-	casts.	Meteor.	Appl.,	16,	361–368.		
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Skill Assessment: Counting	Ensemble	vs	
ELR	
 

Counting	Ensemble	 ELR	
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For	a	single	GCM	(GFDL3)	



Skill Assessment:  ELR	based	MME	
 Rank	Probability	Skill	Score	(RPSS)	

Reliability	Diagram	 Generalized	ROC	Score	(GROC)	
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v  Real-time experimental probability forecast generated by above stated calibration 
method for monsoon 2018.  

Forecast for JJAS generated in June,2018 Real time Anomaly for JJAS,2018 

v  The spatial pattern of deficit and excess rainfall well capture by Forecast. 

Real time Forecast (tercile) and Verification	
 

Source: http://imdpune.gov.in/Seasons/Pre_Monsoon/premonsoon.html 
 



Forecast for JJAS generated in June,2018 Real time Anomaly for JJAS,2018 

Real time Forecast (full distribution) and 
Verification	
 

CDF	 PDF	



Remarks	
  
v ELR based forecast show some good hope for making 

reliable probability forecast. 

v The proposed calibration method also make a flexible 
forecast format (full distribution rather tercile) that allows 
users to glean information from those part of forecast 
distribution what matters most to them such as the 
probability of extremely dry/wet conditions.  

 
v Room for Improvement: ELR based forecast is less sharp. 
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