Calibration and Combination of NMME precipitation forecast over South America using Ensemble Regression

Marisol Osman and Carolina Vera

osman@cima.fcen.uba.ar

Motivation

- Current seasonal outlook at the Argentina Met Service (SMN) is based on a subjective consolidation of seasonal forecast made in other centers.
- The SMN, as part of the Regional Climate Center for Southern South America, wants an objective consolidated forecast tailored for the continent.
- We explore the performance of a calibrated and consolidated forecast based on the outputs from the NMME project.

Calibration approach: Ensemble Regression

- Develop a linear model linking the ensemble mean with the observation.
- Evaluate the regression equation on each member of the ensemble (F')

$$\mathbf{Y}' = a_0 + a_1 * F' + \varepsilon$$

 Each member is characterized by a PDF which distribution is N(Y', ε)

The final PDF is the normalized sum of each PDF obtained after applying Ensemble Regression to each member of the ensemble

Combination approach

Weighted calibrated PDF (WPDF) Weighted sum of the calibrated

Weighted sum of the calibrated PDF of each model obtained through ensemble regression

Weighted super-ensemble regression (WSEREG)

Ensemble regression applied to the weighted super-ensemble

How do we weight models? - 3 options

0.9 0.7 0.5 0.3 0.1

> -0.1 -0.3 -0.5

-0.9

MEAN CORRELATION

Weight proportional to the correlation between the EM of the model and the Obs

PDF_INT

Weight = # of yrs the PDF intensity of a model was max at the observation value/ total yrs

SAME weight to all models

Data

- **DJF Precipitation Forecast**
- Initial conditions: November (lead 1 month)
- Hindcast years: 1982-2010

Institution	Model	# Ens Members
CMC	CanCM3	10
CMC	CanCM4	10
COLA	CCSM4	10
COLA	CCSM3	6
GFDL	CM2p1a	10
GFDL	FLOR-A05	12
GFDL	FLOR-B01	12
NASA	GEOS5	4
NCEP	CFSv2	24

Which calibration technique is better?

Does weighting models make a difference?

7 examples analyzed

- WPDF + Weighting according to the correlation of each model
- WPDF + Weighting according to intensity of the PDF of each model
- WPDF + Same weight to all models
- WSEREG + Weighting according to the correlation of each model
- WSEREG + Weighting according to intensity of the PDF of each model
- WSEREG + Same weight to all models
- Uncalibrated Ensemble

Model weights

Weight related to the **Correlation**

Weight related to the Intensity of the PDF

Green: Model weights **more** than mean weight Violet: Model weights **less** than mean weight

Verification: Reliability - DJF Forecast IC Nov

The WPDF technique improves the reliability in the above normal category

The WSEREG technique improves the reliability in the below normal category

Verification: ROC - DJF Forecast IC Nov

All the combination techniques improve the discrimination Using the same weight for all models doesn't improve the discrimination

WSEREG + Weighting according to the mean correlation Shows good discrimination throughout lead times

Impact of objective combination in forecast: DJF 83-84

WSEREG Weighted w/ WSEREG Weighted w/WSEREG Weighted w/ Mean Correlation PDF Intensity same weight

_	-							_			-
+70%	65%	55%	45%	45%	55%	65%	+70%	45%	55%	65%	+70%
Lower					Nor	mal			Up	per	

WPDF Weighted w/ Mean Correlation

65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Normal Upper

									_				
_			_			_	_	_				_	
70%	65%	55%	45%	45%	55%	65%	+70%	459	6	55%	65%	+70%	
Lower				Normal					Upper				

WPDF Weighted w/ PDF Intensity

+70% 65% 55% 45% 55% 65% +70% Lower Normal Upper

+70% 65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Normal Upper

WPDF Weighted w/ same weight

+70% 65% 55% 45% 55% 65% +70% 55% 65% +70% Lower Normal Upper

Uncalibrated ensemble

+70% 65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Norma Upper

Observed category

Impact of objective combination in forecast: DJF 97-98

WSEREG Weighted w/WSEREG Weighted w/Mean CorrelationPDF Intensitysame weight

+70% 65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Normal Upper

WPDF Weighted w/ Mean Correlation

+70% 65% 55% 45% 45% 55% 65% +70% Lower Normal Upper

+70% 65% 55% 45% 45% 55% 65% +70% Lower Normal Upper

WPDF Weighted w/ PDF Intensity

+70% 65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Normal Upper

+70% 65% 55% 45% 45% 55% 65% +70% 45% 55% 65% +70% Lower Normal Upper

WPDF Weighted w/ same weight

Uncalibrated ensemble

+70% 65% 55% 45% 45% 55% 65% +70% Lower Normal Upper

Observed category

Conclusions

- Calibrating and combining models improved the performance, especially in terms of **discrimination**.
- Weighting matters! Even calibrated models need to be weighted before combining them to overcome the performance of the uncalibrated ensemble
- Weighting according to the mean correlation makes weight maps more regular than weighting according to the intensity of the PDF
- The combination of models with WSEREG with weights according to the mean correlation shows a good performance for lead times longer than 1 month. Limitation: computational time higher than the rest of the methods
- Forecast maps look irregular in regions with lower seasonal signal ---> Downgrade the spatial resolution? Apply a spatial smoothing?

Thank you

osman@cima.fcen.uba.ar

Verification: AUROC - Above normal event

