

How skilful are decadal predictions?

Doug Smith, Rosie Eade, Adam Scaife, Louis-Philippe Caron, Tom Delworth, Francisco J. Doblas-Reyes, Nick J. Dunstone, Leon Hermanson, Slava Kharin, Masahide Kimoto, Bill Merryfield, Takashi Mochizuki, Wolfgang Müller, Holger Pohlmann Xiaosong Yang and Stephen Yeager

CMIP5 multi-model skill: years 2-5

- · High skill for temperature, limited skill for rainfall
- · Improvement from initialisation mainly in North Atlantic, little impact over land
- · Reassess skill in light of signal to noise paradox
 - Large ensemble
 - Focus on anomaly correlation
- · Propose a more powerful method to assess the impact of initialisation

Signal to noise paradox

- Ratio of predictable components RPC = r(model~obs) / r(model~model)
- RPC > 1 implies:

> Skilful forecasts possible using mean of large ensemble (though

paradoxically models cannot predict themselves!)

 \succ but variability too small \rightarrow **post processing** needed to adjust variance

skill measures of amplitude (e.g. RMSE, MSSS, probabilistic measures based

on raw ensemble members) will underestimate skill

need anomaly correlation to assess available skill

Assess skill of multi-model decadal forecasts

Forecast centre	Model	Initialised ensemble size	Uninitialized ensemble size
Met Office	HadCM3 (anomaly)	10	10
Met Office	HadCM3 (full field)	10	
CCCMA	CanCM4	10	10
GFDL	CM2	10	10
MIROC	MIROC5	6	3 (1 for precip/mslp)
MPI	MPI-ESM-LR	10	3
NCAR	CESM1.1	10	
BSC	EC-Earth	5	
	Total ensemble size:	71	36

- Hindcasts start dates every year from 1960
- CMIP5 plus new hindcasts from MPI, NCAR and EC-Earth
- All centres contribute to real-time multi-model exchange of decadal predictions

Skill: years 2-9: NAO (annual)

Predicted signal has very small amplitude
 — MSSS positive but not significant

• BUT signal is somewhat similar to observations (increase from 1960s to 1990s, slight decrease thereafter)

- Correlation is significant (r = 0.52, p = 0.027)
- Skill is much higher with observations than with individual model members → RPC > 6

Ratio of predictable components (RPC): years 2-9

- RPC > 1 in many regions
- · Especially for rainfall and pressure
- Signal to noise paradox is widespread on decadal timescales

Impact of initialisation: subpolar gyre temperature, years 2-9,JJA

Very high correlations for both initialised (Init r = 0.97) and uninitialized (Unin r = 0.94)

- Difference in correlations is not significant
- But residuals are highly and significantly correlated (r = 0.73, p = 0.007)

 Initialised predictions capture some of the variability that is missing from uninitialized simulations

Impact of initialisation: temperature, years 2-9, JJA

- · Improvement from initialisation is much clearer in correlation of residuals
- · Impacts now seen over some land areas, including Europe

Impact of initialisation: temperature, years 2-9, JJA

· Residuals may be correlated but unimportant if only a small part of the total variance

· Compute fraction of total skill coming from initialisation

Skill and impact of initialisation: years 2-9 Total skill (a) Temperature

Fraction from initialisation (b) Temperature

- · High skill for temperature
- · Significant skill for rainfall over land in many regions
- Significant skill for pressure (except Indian Ocean, central Asia, Africa)
- Significant improvements from initialisation
- \rightarrow especially rainfall and pressure

(c) Precipitation

(e) Pressure

0.0

-0.9

-0.6

-0.3

0.3

0.6

Predicting regional patterns

Decadal predictions (a) Temperature

Observations (b) Temperature

- Difference between1998-2014 and 1978-1994
- Both AMV and PDV changed sign
- Standardised anomalies
- Global average removed for

temperature

(c) Precipitation 🗼

(e) Pressure

-1.8

-1.2

-0.6

(d) Precipitation

(f) Pressure

1.8

1.2

0.6

0.0

Central role of external forcing?

identical

Summary

- Signal to noise paradox
 - > Need very large ensemble to extract predictable signal
 - \succ Many measures underestimate skill \rightarrow anomaly correlation needed
- Impact of initialisation
 - > Assessing differences between (very high) correlations is not optimal
 - > Assess variability not captured by uninitialized simulations → more powerful
- Decadal predictions are skilful
 - > Temperature
 - Rainfall over land
 - Pressure
- · Patterns of skill are very similar in uninitialized simulations
 - > Initialisation is mainly improving the response to external forcing?
 - > Detrended skill role for aerosols, solar, volcanoes...

Assessing the impact of initialisation

- Assessing differences between (very high) correlations is not optimal
- RMSE (and other measures) underestimate skill if the signal to noise ratio is too small
- Propose a new method: does initialisation improve predictions of variability not captured by uninitialized simulations?
 - > Decompose forecast (f) and observed (o) time series

$$f = \hat{f} + f' \qquad \qquad o = \hat{o} + o$$

- > Where \hat{f}, \hat{o} are the components of *f* and *o* that are explained by linear regression of uninitialized simulations
- > The **residuals** f', o' are linearly independent of the uninitialized runs
- > Impact of initialisation may be assessed as correlation between residuals f', o'
- This is likely to be larger than the differences between initialised and uninitialized correlations, increasing the "effect size" and enhancing the power of the test

Skill: years 2-9: DJF

Total skill (a) Temperature Fraction from initialisation (b) Temperature

(c) Precipitation

(d) Precipitation

(e) Pressure

(f) Pressure

Skill: years 2-9: JJA

Total skill (a) Temperature Fraction from initialisation (b) Temperature

(c) Precipitation

(d) Precipitation

(e) Pressure

(f) Pressure

