How skilful are decadal predictions?

Doug Smith, Rosie Eade, Adam Scaife, Louis-Philippe Caron, Tom Delworth, Francisco J. Doblas-Reyes, Nick J. Dunstone, Leon Hermanson, Slava Kharin, Masahide Kimoto, Bill Merryfield, Takashi Mochizuki, Wolfgang Müller, Holger Pohlmann Xiaosong Yang and Stephen Yeager
CMIP5 multi-model skill: years 2-5

Total skill (RMSSS)
1 – RMSE / RMSE clim

Impact of initialisation
RMSE init / RMSE Nolnit

- High skill for temperature, limited skill for rainfall
- Improvement from initialisation mainly in North Atlantic, little impact over land

- Reassess skill in light of signal to noise paradox
 - Large ensemble
 - Focus on anomaly correlation
- Propose a more powerful method to assess the impact of initialisation

Kirtman et al 2013; Doblas-Reyes et al 2013
Signal to noise paradox

- Ratio of predictable components \(\text{RPC} = \frac{r(\text{model} \sim \text{obs})}{r(\text{model} \sim \text{model})} \)
- \(\text{RPC} > 1 \) implies:
 - Skilful forecasts possible using mean of large ensemble (though paradoxically models cannot predict themselves!)
 - but variability too small \(\rightarrow \) post processing needed to adjust variance
 - skill measures of amplitude (e.g. RMSE, MSSS, probabilistic measures based on raw ensemble members) will underestimate skill
 - need anomaly correlation to assess available skill

Assess skill of multi-model decadal forecasts

<table>
<thead>
<tr>
<th>Forecast centre</th>
<th>Model</th>
<th>Initialised ensemble size</th>
<th>Uninitialized ensemble size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Office</td>
<td>HadCM3 (anomaly)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Met Office</td>
<td>HadCM3 (full field)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CCCMA</td>
<td>CanCM4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>GFDL</td>
<td>CM2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>MIROC</td>
<td>MIROC5</td>
<td>6</td>
<td>3 (1 for precip/mslp)</td>
</tr>
<tr>
<td>MPI</td>
<td>MPI-ESM-LR</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>NCAR</td>
<td>CESM1.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>BSC</td>
<td>EC-Earth</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total ensemble size:</td>
<td>71</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

- Hindcasts start dates every year from 1960
- CMIP5 plus new hindcasts from MPI, NCAR and EC-Earth
- All centres contribute to real-time multi-model exchange of decadal predictions
Skill: years 2-9: NAO (annual)

- Predicted signal has very small amplitude → MSSS positive but not significant
- BUT signal is somewhat similar to observations (increase from 1960s to 1990s, slight decrease thereafter)
- Correlation is significant ($r = 0.52$, $p = 0.027$)
- Skill is much higher with observations than with individual model members → RPC > 6
Ratio of predictable components (RPC): years 2-9

- RPC > 1 in many regions
- Especially for rainfall and pressure
- Signal to noise paradox is widespread on decadal timescales

Smith et al, in prep
Impact of initialisation: subpolar gyre temperature, years 2-9, JJA

- Very high correlations for both initialised (Init $r = 0.97$) and uninitialized (Unin $r = 0.94$)
- Difference in correlations is not significant
- But residuals are highly and significantly correlated ($r = 0.73$, $p = 0.007$)
- Initialised predictions capture some of the variability that is missing from uninitialized simulations

Smith et al, in prep
Impact of initialisation: temperature, years 2-9, JJA

- Improvement from initialisation is much clearer in correlation of residuals
- Impacts now seen over some land areas, including Europe

Smith et al, in prep
Impact of initialisation: temperature, years 2-9, JJA

- Residuals may be correlated but unimportant if only a small part of the total variance
- Compute fraction of total skill coming from initialisation
Skill and impact of initialisation: years 2-9

- High skill for temperature
- Significant skill for rainfall over land in many regions
- Significant skill for pressure (except Indian Ocean, central Asia, Africa)
- Significant improvements from initialisation → especially rainfall and pressure
Predicting regional patterns

- Both AMV and PDV changed sign
- Standardised anomalies
- Global average removed for temperature

Smith et al, in prep, following Robson et al papers
Central role of external forcing?

- Initialised and uninitialized patterns of skill are almost **identical**
- Improvements mainly where uninitialized already has some **skill**
- Initialisation mainly improving the **forced response** rather than predicting internal variability?
- **Not just a trend** – role for aerosols, solar, volcanoes…

Smith et al, in prep
Summary

• Signal to noise paradox
 ➢ Need very large ensemble to extract predictable signal
 ➢ Many measures underestimate skill → anomaly correlation needed

• Impact of initialisation
 ➢ Assessing differences between (very high) correlations is not optimal
 ➢ Assess variability not captured by uninitialized simulations → more powerful

• Decadal predictions are skilful
 ➢ Temperature
 ➢ Rainfall over land
 ➢ Pressure

• Patterns of skill are very similar in uninitialized simulations
 ➢ Initialisation is mainly improving the response to external forcing?
 ➢ Detrended skill – role for aerosols, solar, volcanoes…
Assessing the impact of initialisation

- Assessing differences between (very high) correlations is not optimal
- RMSE (and other measures) underestimate skill if the signal to noise ratio is too small

- Propose a new method: **does initialisation improve predictions of variability not captured by uninitialized simulations?**
 - Decompose forecast \(f \) and observed \(o \) time series
 \[
 f = \hat{f} + f' \quad \quad o = \hat{o} + o'
 \]
 - Where \(\hat{f}, \hat{o} \) are the components of \(f \) and \(o \) that are explained by linear regression of uninitialized simulations
 - The **residuals** \(f', o' \) are linearly independent of the uninitialized runs
 - Impact of initialisation may be assessed as correlation between residuals \(f', o' \)
 - This is likely to be larger than the differences between initialised and uninitialized correlations, increasing the “effect size” and enhancing the **power** of the test
Skill: years 2-9: DJF

- Total skill (a) Temperature
- Fraction from initialisation (b) Temperature
- (c) Precipitation
- (d) Precipitation
- (e) Pressure
- (f) Pressure
Skill: years 2-9: JJA