# **Multi-year prediction of ENSO**

Jing-Jia Luo<sup>1\*</sup> (jingjia\_luo@hotmail.com), Hanh Nguyen<sup>1</sup>, Harry Hendon<sup>1</sup>, Oscar Alves<sup>1</sup>, Nick Dunstone<sup>2</sup>, Craig MacLachlan<sup>2</sup>

<sup>1</sup>Australian Bureau of Meteorology (BoM) <sup>2</sup>UK Met Office

\*Now at Nanjing University of Science Information and Technology (NUIST), China

# **Developing a multi-year prediction system at BoM:**

- 1. ACCESS-S1: New BoM prediction system based on UK GC2 (60 km atmosphere + 25km ocean, high vertical resolutions)
- 2. Collaboration with UK Met Office: DePreSys3

## UKMO DePreSys3

- **16 months:** 1 Nov start date, every year during 1980-2014; 30 members
- 66 months: 1 Nov start date, every 2-3 year during 1960-2014; 10 members

### JAMSTEC SINTEX-F

• **24 months:** start from 1<sup>st</sup> day of every month, 1982-2012, 9 members.







#### 2-year prediction of La Niña events (SINTEX-F):



Luo et al. J. Climate 2008

# Real time forecasts (http://www.jamstec.go.jp/frsgc/research/d1/iod/e/seasonal/ outlook.html)







### SSTA & 2-m air temperature anomaly

Contour interval is  $0.3^{\circ}\mathrm{C}$ 

#### 2-year lead ENSO prediction (SINTEX-F, 9 members):



Luo et al., J. Climate, 2008.

#### <u>DePreSys3</u>

#### Prediction skill of multi-year mean SST anomaly







# Summary :

✤ Large climate drifts and initial shocks exist.

ENSO can be skilfully predicted out to about 1.5 -2 years ahead.

Multi-year mean temperature anomalies can be predicted at decadal time scale, particularly in the areas with strong warming trends.

Prediction of precipitation is more challenging.

#### Prediction skill of multi-year mean surface air temperature anomaly



#### Prediction of surface air temperature anomaly

#### Prediction of precipitation anomaly

