Near-term Hydroclimate outlooks based on the Community Earth System Model (CESM) Decadal Prediction Large Ensemble (DPLE)

Steve Yeager
National Center for Atmospheric Research (NCAR)
Climate and Global Dynamics (CGD) Laboratory

with the CESM-DPLE team: Nan Rosenbloom, Gary Strand, Gokhan Danabasoglu, Susan Bates, Gerald Meehl, Alicia Karspeck, Keith Lindsay, Matt Long, Haiyan Teng, and Nicole Lovenduski
The CESM Decadal Prediction Large Ensemble

<table>
<thead>
<tr>
<th>Experiment Name</th>
<th>CCSM4-DP</th>
<th>CESM-DP-LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-atm</td>
<td>CCSM4</td>
<td>CESM1.1</td>
</tr>
<tr>
<td>-ocn</td>
<td>CAM4 (FV 1°, 26lvl)</td>
<td>CAM5 (FV 1°, 30lvl)</td>
</tr>
<tr>
<td>-ice</td>
<td>POP2 (1°, 60lvl)</td>
<td>POP2 (1°, 60lvl) w/ BGC</td>
</tr>
<tr>
<td>-Ind</td>
<td>CICE4 (1°)</td>
<td>CICE4 (1°)</td>
</tr>
<tr>
<td></td>
<td>CLM4</td>
<td>CLM4</td>
</tr>
<tr>
<td>Uninitialized Ensemble (UI)</td>
<td>6-member CCSM4 20th century ensemble (Meehl et al., 2012)</td>
<td>40-member CESM 20th century Large Ensemble (Kay et al., 2015)</td>
</tr>
<tr>
<td>Forcing</td>
<td>-2005: CMIP5 historical</td>
<td>-2005: CMIP5 historical</td>
</tr>
<tr>
<td></td>
<td>2006--: CMIP5 RCP 4.5</td>
<td>2006--: CMIP5 RCP 8.5</td>
</tr>
<tr>
<td>Initialization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-method</td>
<td>full field</td>
<td>full field</td>
</tr>
<tr>
<td>-atm</td>
<td>UI</td>
<td>UI</td>
</tr>
<tr>
<td>-ocn</td>
<td>CORE-forced FOSI</td>
<td>CORE*+forced FOSI</td>
</tr>
<tr>
<td>-ice</td>
<td>CORE-forced FOSI</td>
<td>CORE*+forced FOSI</td>
</tr>
<tr>
<td>-Ind</td>
<td>UI</td>
<td>UI</td>
</tr>
<tr>
<td>Ensembles</td>
<td>10 annual; Jan. 1st 1955-2014 (N=60) Variable January start days + round-off perturbation of atm initial conditions 120 months</td>
<td>40 annual; Nov. 1st 1954-2015 (N=62) round-off perturbation of atm initial conditions 122 months</td>
</tr>
<tr>
<td>CMIP5-era (2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMIP6-era (2017)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Active ocean biogeochemistry
- More robust assessment of the skill derived from external forcing
- Improved ocean initial conditions (reduced shock)
- Large ensemble size
- Now extended to 2017
OUTLINE

• Global overview of skill at predicting seasonal precipitation over land
 • Impact of initialization

• Focused examination of some select regions/seasons:
 • African Sahel (JAS)
 • Northern Europe (JAS)
 • Pacific Northwest (JAS)
 • Scandinavia (JFM)
 • Pacific NW (JAS)

• Towards an improved understanding of regional precipitation skill:
 • Skill (skill improvement) dependence on ensemble size
 • Skill dependence on lead time
 • What can be learned from skill spread?

Yeager et al., 2018: Predicting near-term changes in the Earth System: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model, Bull Amer Meteorol Soc, in press, doi: 10.1175/BAMS-D-17-0098.1
CESM-DPLE: Boreal Summer (JAS) Precip

- 40-member-, pentadal-means
- Land-only data
- 5°×5° grid with 9-pt spatial smoother (each grid point represents 15°×15°)

- OBS = CRU-TS4.0 (Harris et al. 2014, Int J Climatol)
- Top row: ACC(DPLE,OBS)
- Middle row: ΔACC relative to persistence
- Bottom row: ΔACC relative to 40-member LE

ACC, Precipitation, OBS=CRU-TS4.0, Season=JAS, 9-pt-smoothed, (LY 1-5: 1957.6-2013.6)

LY 1-5

LY 3-7

LY 5-9

Yeager et al. (2018)
• Local p values determined using block bootstrap resampling across time/member (Goddard et al. 2013)

• \(p > 0.1 \) (not significant) indicated by “/”

• Global field significance \((p << 0.1) \) using False Discovery Rate method (Wilks 2016) indicated by “•”

ACC, Precipitation, OBS=CRU-TS4.0, Season=JAS, 9-pt-smoothed, (LY 1-5: 1957.6-2013.6)

LY 1-5

LY 3-7

LY 5-9

d. \(\Delta \text{ACC} \)

e. \(\Delta \text{ACC} \)
f. \(\Delta \text{ACC} \)
g. \(\Delta \text{ACC} \)
h. \(\Delta \text{ACC} \)
i. \(\Delta \text{ACC} \)
CESM-DPLE: Boreal Summer (JAS) Precip

- Complex picture requiring region-by-region scrutiny
- Overall, positive impact of initialization
- Increasing skill with lead time in many regions

ACC, Precipitation, OBS=CRU-TS4.0, Season=JAS, 9-pt-smoothed, (LY 1-5: 1957.6-2013.6)

LY 1-5

- a. ACC
- d. ΔACC
- g. ΔACC

LY 3-7

- b. ACC
- e. ΔACC
- h. ΔACC

LY 5-9

- c. ACC
- f. ΔACC
- i. ΔACC

Color bar:
- ACC: -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
- ΔACC: -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Yeager et al. (2018)
• Skill (and skill difference from UI) largely resilient to detrending ➔ not simply an artifact of trend bias correction

• Increased skill in Africa, Saudi Arabia, South Asia, Brazil

ACC, Precipitation, OBS=CRU-TS4.0, Season=JAS, 9-pt-smoothed, (LY 1-5: 1957.6-2013.6), detrended

Yeager et al. (2018)
CESM-DPLE: Boreal Winter (JFM) Precip

- Mixed impact of initialization
- Some increase of skill with lead time: East Asia, Western US
- Noteworthy skill/skill enhancement: N Europe & Eurasia, E Africa, W Australia
CESM-DPLE: Boreal Winter (JFM) Precip (detrended)

- Skill (and skill difference from UI) largely resilient to detrending
- Increased skill in central Africa

ACC, Precipitation, OBS=CRU-TS4.0, Season=JFM, 9-pt-smoothed, (LY 1-5: 1957.1-2013.1), detrended