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Approach

e Will focus on the characterisation of the Madden Julian Oscillation (MJO)
via a Normal Mode Functions (NMF) decomposition of JRA55, and dis-
cuss implications for Normal Mode Inialisation (NMI).

e MJO is a mode of variability resulting from coupled tropical deep convec-
tion and atmospheric dynamics.

e Use key MJO properties to identify representatives NMFs:
— Eastward propagating
— Dominant variance over intra-seasonal timescales: 30-90 days.
— Tropics centric dynamics.
— Horizontal velocity field has a dominant longitudinal wave of k = 1.

— Dominant component of the zonal velocity is symmetric about the
equator.

e Using one such mode we produce phase and conditional averages of:
— velocity potential to illustrate atmospheric dynamics
— outgoing longwave radiation to illustrate convection

e Acknowledge Zagar for sharing the NCAR NMF code, MODES.



What are Normal Mode Functions ?

e Decompose 3D (), ¢, o) velocity (u, v) and geopotential height (h) fields
into horizonal and vertical scales, and mode type, using the eigensolu-
tion of the linearised primitive equations on a sphere.

e Each scale decomposed into: Balanced Component (BAL) ; Eastward
Inertial Gravity Wave (EIG) ; Westward Inertial Gravity Wave (WIG).

e Vertical Structure Functions (VSF), GG,,, in o coordinates.

e Longitudinal (\) waves e!**

e Meridional (¢) Horizonal Structure Functions (HSF) of wind and height
(U, V, H) for EIG, WIG and BAL modes.
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e Complex coefficients, x;. (t), represent contributions of each compo-
nent.



Vertical Structure Functions

e VSF given by solution of the VSF eigenvalue problem (EVP).

e VSF EVP requires only a time and horizontally averaged static stability
profile in o coordinates.
e Equivalent heights D,, (eigenvalues) are indicative of vertical scale.

e VSF GG,,(o) (eigenvectors) have m—1 zero crossings. (G is the barotropic,
(35 the first baroclinic, G5 the second baroclinic, ...

e For large m, the VSF represent boundary layer processes.

(a) static stability = T (b) equivalent height = Dy, (c) vertical structure functions
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Horizontal Structure Functions

e HSF given by solution of a HSF EVP for each equivalent height (D,,).

e Eigenvectors give meridional dependence, with mode types (EIG, WIG,
BAL) defined by symmetry properties.

e Frequency v (eigenvalue) is indicative of temporal scale.
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e Recall for MJO: k = 1; tropics centric; U is symmetric

e Only the EIG n = 0, WIG n = 0, and BAL n = 1 are tropics centric with
the appropriate symmetries.

e EIGm =23 — 32 ;BALm = 11 — 22 have intra-seasonal timescales.



Energy Contribution \% (¢)x} (t) of NMFs in JRA55

e BAL dominates for low k, |G dominate for high &
e BAL dominates for all vertical modes m
e For (k,n) = (1, 1) BAL HSF eigenvectors have MJO-like properties:

— BAL (k,n,m) = (1,1,2) and (1, 1,2) local peaks in energy, but too
fast

— BAL (k,n,m) = (1,1, 15) has HSF eigenvalue of 46 days.
e For (k,n) = (1,0) EIG HSF eigenvectors also have MJO-like properties:
— EIG (k,n,m) = (1,0, 8) has most energy, but timescale too fast

— EIG (k,n,m) = (1,0, 28) has HSF eigenvalue of 56 days.
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Cross-spectral Analysis of Candidate NMFs

e All candidate modes are tropics centric and have the appropriate symme-
tries.

e Only EIG (k,n,m) = (1,0,28) has an intra-seasonal timescale, and
propagates eastward, but has low energy.

e Cross-spectral analysis identifies only slow intra-seasonal timescales are
coherent between EIG (k,n,m) = (1,0,28) and the more energetic
modes.

e Fast Kelvin wave removed from energetic EIG (k,n,m) = (1,0, 8).

(d) coherence output [J/kg

¢) coherence

(a) PSD of EIG(}QO.B) [J/kg] (b) PSD of EIG(LT‘0728) [J/kg]

10!

10°

107! 101

[ [1/days]

1072

1072

1073 1073

1074 104




Cross-spectral Analysis of Candidate NMFs

e All candidate modes are tropics centric and have the appropriate symme-
tries.

e Only EIG (k,n,m) = (1,0,28) has an intra-seasonal timescale, and
propagates eastward, but has low energy.

e Cross-spectral analysis identifies only slow intra-seasonal timescales are
coherent between EIG (k,n,m) = (1,0,28) and the more energetic
modes.

e Repeated for all vertical scales (m) with £ = 1 for BAL and EIG.

(e [1/ke]

coherence output of EIG1 g )

e Other candidate modes highlighted in coherence output clusters.



Phase Average on Basis of EIG (k,n,m) = (1,0, 28)

e Phase angle calculated from complex Xi . Dates associated with each
phase angle octant averaged. All modes contribute to phase averages.
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e Velocity potential is a propagating longitudinal wave, with a vertical sign
change representing upper level divergence and lower level convergence.



Phase Average on Basis of EIG (k,n,m) = (1,0, 28)

e Phase angle calculated from complex Xi . Dates associated with each
phase angle octant averaged. All modes contribute to phase averages.
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e OLR has a dipole pattern over the maritime continent, tracking with veloc-
ity potential of like sign.



Large and Persistent MJO Events

e Start and end of each event defined as discontinuities in phase angle of
EIG (k,

n,m) = (1,0,28).

e Persistent events have a continuous phase for longer than 270°.
e Large events have a magnitude in the upper quartile.

e Composite average magnitude is greater than background for 20 days be-

fore and after day 0.
e Composite average phase angle indicates eastward propagation.
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e Dates associated with each phase shift identified and averaged to produce
composite fields of velocity potential and outgoing longwave radiation.
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Velocity Potential at 200hPa - Wave Like
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Outgoing Longwave Radiation at 200hPa - Dipole Like
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Instantaneous Comparison of NMFs and WH

e Wheeler & Hendon index based on first two PCs of meridionally averaged
u at 200hPa, 850hPa and OLR within 15°S and 15° V.

e Compare to tropics centric NMFs, with MJO-like symmetries:
— BAL(k,n,m) = (1, 1,8) : energetic, but westward, timescale too fast.
— EIG(k,n,m) = (1,0, 8) : energetic, but timescale too fast.
— BAL(k,n,m) = (1,1, 15) : intra-seasonal timescale, but westward.

— EIG(k,n,m) = (1,0,28) : intra-seasonal timescale, eastward, not
energetic.
e Correlation of BAL (k,n,m) = (1, 1,8) with WH when filtered to retain
temporal scales coherent with EIG (k,n, m) = (1,0,28) is 0.78.
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Instantaneous Comparison of NMFs and WH

e Wheeler & Hendon index based on first two PCs of meridionally averaged
u at 200hPa, 850hPa and OLR within 15°S and 15° V.

e In comparision to WH, coherence filtered BAL(k,n,m) = (1,1,8) mode
exhibits:

— high correlation in magnitude over the entire time series (1958-2016)
— consistent phase propagation for a specific event (Jan 2012)
— consistent spiralling in for a specific event in phase space
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Proposed MJO Skeleton

e Nonlinear interactions of these modes generates an energetic MJO of
eastward propagation and correct phase period.

e All modes have MJO-like longitudinal and meridional structure.

EIG (1,0,8) ; m=1-10 like EIG (1,0,28) ; m=23-32
Energetic, mode Intra-seasonal timescale,
but too fast type but not energetic

like like
vertical time
scales scales

Most energetic, but like Intra-seasonal timescale,

too fast and westward mode but westward

BAL (1,1,8) ; m=1-10 type BAL (1,1,15) ; m=11-22

e Interaction strength inferred from cross-spectral analysis.
e In the future will calculate the nonlinear transfer terms explicitly.



Concluding Remarks

e NMFs decompose a 3-D atmospheric geopotential height and horizon-
tal velocity field into scale (zonal, meridional, vertical) and mode class
(BAL, EIG, WIG).

e MJO-like NMF modes and their interactions were isolated in the JRA-55.
e A skeleton physical model of the MJO was proposed.

e Implications for Normal Modes Initialisation:

— Since the IG waves have shorter timescales, they are potentially less
predictable over a multi-year period.

— Naively one would think that filtering the IG waves would improve pre-
dictability.

— However, the EIG waves (even of small vertical scale and low energy)
are shown here to be dynamically important for the MJO.



Questions

Vertical Structure Functions
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Skeleton Physical Model

EIG (1,0,8) ; m=1-10 like EIG (1,0,28) ; m=23-32
Energetic, mode Intra-seasonal timescale,
but too fast type but not energetic
like like
vertical time
scales scales
Most energetic, but like Intra-seasonal timescale,
too fast and westward mode but westward

BAL (1,1,8) ; m=1-10 type BAL(1,1,15); m=11-22
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