

Development and current S2D prediction skill of the Norwegian Climate Prediction Model (NorCPM)

Yiguo Wang^{1,4}, François Counillon^{1,2,4}, Noel Keenlyside^{1,2}, Madlen Kimmritz^{1,4}, Ingo Bechke^{3,4}, Helene Langehaug^{1,4} and Fei Li⁵

- 1 Nansen Environmental and Remote Sensing Center, Norway
- 2 Geophysical Institute, University of Bergen, Norway
- 3 Uni Research Climate, Norway
- 4 Bjerknes Centre for Climate Research, Norway
- 5 Norwegian Institute for Air Research, Norway

norstore

🗰 notur

Norwegian Climate Prediction Model (NorCPM)

(Bentsen et al., 2013; Counillon et al, 2014)

Norwegian Climate Prediction Model (NorCPM)

(Bentsen et al., 2013; Counillon et al, 2014)

Strategy plan of NorCPM

Benefit of **SIC** DA for seasonal prediction (Poster: P-A2-03 Tue. Center Green)

Seasonal predictions initialised by SSTA

Decadal NA SPG predictions initialised by SSTA and TS anom

- 1. Include more and more observation types into the system
- 2. Distinguish the benefit of adding different observation types
- 3. Weakly coupled DA -> strongly coupled DA
- 4. Assimilate SST and subsurface data anom for CMIP6 DCPP

Validation for the reanalysis over 1950-2010

- Good match with independent observations for HC/SC and SPG
- Potential to reconstruct the climate variability from 1850-present

(Counillon et al., 2016)

Experimental design of seasonal predictions

NorESM–ME version (CMIP5): atmosphere: 1.9^ox2.5^o, 26 levels; ocean: 1^o, 53 levels, historical external/RCP8.5 forcing

- Reanalysis (1980-2010):
 - > SST data from HadISST2 dataset
 - > Monthly assimilate anomalies
 - > 30 ensemble members

- Hindcast (1985-2010):
 - > Start from Jan, Apr, Jul and Oct
 - > 9 ensemble members
 - > Last for 13 months
- Validation dataset: OISST dataset, EN4 dataset, HadISST2 sea ice dataset

Seasonal predictions for SST

- Skilful as NMME in the tropical Pacific (due to initialisation).
- Skilful in the Iceland basin and western tropical Atlantic (due to both initialisation and global warming trend).

Seasonal predictions for SST

- NorCPM ranks in the SIMILAR or BEST bins in most region.
- NorCPM is among the best systems in the region extending from the Iceland Basin to the Barents Sea.

ENSO predictions (Nino 3.4 index)

NorCPM is skillful and generally in the range of the NMME
May skill drop: model deficiencies in thermocline and Bjeknes feedbacks.

Seasonal predictions for Barents sea ice extent

Skilful in the boreal winter-spring, highly related to the initialisation of the upper ocean heat content (Bushuk et al., 2017)

Decadal predictions initialised by SST and T/S

Starts every two years over 1985-2010

Summay

- NorCPM will contribute to CMIP6 DCPP, including assimilation of SST and subsurface data.
- Assimilating SST reproduces well the climate variability in particularly in the north Atlantic, showing a potential of SST data (HadISST2) to reconstruct the climate back to 1850.
- At seasonal timescales, NorCPM can successfully predict the variability of SST and Arctic SIE 8 months in advance.
- At decadal timescale, NorCPM can predict winter SST in the NA SPG region several years ahead (up to 4 yrs in northern part of SPG).

