

Approaches to reduce model biases to improve in climate prediction

Noel Keenlyside (Geophysical Inst., Uni. Bergen)

F. Counillon, M.-L. Shen, G. Duane

M. Devilliers, S. Koseki, I. Bethke, T. Demissie, A. Gupta, L. Svendsen, T. Toniazzo, Y. Wang

www.preface-project.eu

HAVFORSKNINGSINSTITUTTET

Persistent model biases – dramatic improvement unlikely soon

CMIP5 multi-model mean sea surface temperature error

Two alternative approaches

1. Anomaly coupling -> Improved seasonal prediction in the Tropical Atlantic

(Counillon et al. to be submitted)

2. Supermodelling -> Reduces the Pacific double Inter-tropical Convergence Zone bias (Shen et al. 2016, 2017)

The Atlantic Niño

First EOF of June-August precipitation Linearly related SST and surface wind vectors

Chang et al. 2006

The Atlantic Niño

First EOF of June-August precipitation Linearly related SST and surface wind vectors

The Bjerknes Positive feedback and delayed negative feedbacks underlie the Atlantic Niño [e.g., Zebiak 1993, Keenlyside & Latif, 2007, Ding et al. 2010]

The Atlantic Niño

First EOF of June-August precipitation Linearly related SST and surface wind vectors

The Bjerknes Positive feedback and delayed negative feedbacks underlie the Atlantic Niño [e.g., Zebiak 1993, Keenlyside & Latif, 2007, Ding et al. 2010]

Consistently with the warm bias, coupled models underestimate the thermocline feedback [e.g., Nnamchi et al. 2015, Deppenmeier et al. 2015, Ding et al. 2015a,b]

Chang et al. 2006

A methodology to correct mean state biases: Anomaly coupled model

Courtesy: Thomas Toniazzo

Anomaly coupling captures Atlantic cold tongue

NorESM annual mean SST (ocean model) bias, 1980-2000

Standard

Anomaly coupled

Seasonal predictions – With and without mean state bias

Norwegian Earths System Model with and without anomaly coupling (Toniazzo & Kosseki 2018)

Reanalysis

- 30 member ensemble
- Assimilation of anomaly SST, and T,S profiles , 1980-2010

Retrospective forecasts

1985 to 2010 with 9 members and 4 start date per year

Reduced biases enhances seasonal prediction skill for the Atlantic Niño

Norwegian Climate prediction Model, Correlation skill for ATL3 region 1985-2010, 4 starts per year (Feb. May, Aug. Nov.), 9 ensemble members

Courtesy: Francois Counillon

Reduced bias -> better equatorial variability

Standard deviation of SST along the equator, January - December

Reduced bias enhances ocean analysis

Correlation (1980-2010), 200m heat content EN4 objective analysis with

Norwegian Climate Prediction Model ocean reanalysis

Courtesy: Francois Counillon

... but skill remains poor, and not better than other models

Correlation skill for ATL3 region, NorCPM anomaly coupled and North American Multi-Model Ensemble

1985-2010, 4 starts per year (Feb. May, Aug. Nov.), 9 ensemble members

Courtesy: Francois Counillon

Supermodelling reduces the Pacific double Inter-tropical Convergence Zone bias

(Shen et al. 2016, 2017)

Synchronising complex systems to compensate systematic errors

Approach successfully applied to simple models (e.g., Van den Berge et al. 2011) and to quasi-geostrophic models (e.g., Selten et al. 2017)

Super model versus standard approach

Results from simplified ECHAM5/MPIOM super model

Climatological Precipitation in Tropical Pacific

(Shen et al. 2016, 2017)

Three synchronized Earth System Models

Current stage: Ocean models coupled by assimilating SST

 $SST_{SuperModel} = \frac{1}{3}SST_{EcEarth} + \frac{1}{3}SST_{MpiEsm} + \frac{1}{3}SST_{NorEsm}$ Ocean connection

F. Counillon, M. Devilliers

Three synchronized Earth System Models

Current stage: Ocean models coupled by assimilating SST

 $SST_{SuperModel} = \frac{1}{3}SST_{EcEarth} + \frac{1}{3}SST_{MpiEsm} + \frac{1}{3}SST_{NorEsm}$ Ocean connection

F. Counillon, M. Devilliers

Two alternative approaches

- 1. Anomaly coupling -> Improved seasonal prediction in the Tropical Atlantic
 - Improved simulation of ocean-atmosphere interaction
 - Better initial conditions

(Counillon et al. to be submitted)

- 2. Supermodelling -> Reduces the Pacific double Intertropical Convergence Zone bias
 - Synchronized models can achieve greater bias reduction, because of non-linearity in the climate system
 - First steps towards 3D coupled Earth System Models

(Shen et al. 2016, 2017)

Reducing biases enhances Atlantic Niño prediction

Courtesy: Francois Counillon

Super model strategy – Interactive Ensemble Coarse resolution model: T31L19 atmosphere, 3 degree ocean, Differing in the atmospheric convection scheme

Momentum flux:

$$H = \alpha H_{Nordeng} + (1 - \alpha) H_{Tiedtke}$$

Heat flux:

$$Q = \beta Q_{Nordeng} + (1 - \beta) Q_{Tiedtke}$$

SST, sea ice cover, current speed

Fluxes of heat, momentum, and freshwater

Extension of Kirtman et al., 2003.

Standard coupled model

