

Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments

Constantin Ardilouze CNRM (Univ. Toulouse, Météo France, CNRS)

Acknowledgement: M. Déqué and L. Batté (CNRM) E. van Meijgaard and B. van den Hurk (KNMI)

International Conferences on Subseasonal to Decadal predictions, Boulder, CO 18 Sep. 2018

Introduction (1/2)

- Dynamical forecast systems are poorly skilled in predicting the summer temperature and precipitation in Europe and the Mediterranean
- Empirical relationship found between spring soil moisture (SM) and summer temperature anomalies
- Many studies have spotted regions where summer climate is influenced by SM anomalies, as a result from intense landatmosphere coupling (e.g. Seneviratne et al., 2006; Dirmeyer, 2011, Koster et al. 2011)

Introduction (2/2)

Improved SM initialization \rightarrow improved seasonal forecasts?

Only partly confirmed for Europe, and mainly for T_{2m} (e.g. Van den Hurk et al. 2012, Prodhomme et al. 2016, Ardilouze et al. 2017, Bunzel et al., 2018)

- Could we expect more from SM? Is the role of SM as a driver of predictability overstated?
- Here, we assess the role played by SM as a boundary condition for the European summer climate
- Comparison of 2 sets of 4-month (MJJA) ensemble simulations over a 20-year period, in which SM is:
 - Initialized (= re-forecast)
 - Initialized and daily prescribed to pseudo-observations
- Simulations performed with 2 distinct RCMs

Soil moisture prediction skill in CTRL experiments

- SM is predictable to a certain extent
- Differences in predictability patterns \rightarrow value of a multi-model approach

Soil moisture memory in CTRL experiments

Lagged correlations of initial SWI against 5-day running mean SWI

JJA Tmax correlation (ref. EOBS)

JJA Precipitation Correlation (ref. EOBS)

JJA Downward Surface SW radiation Correlation (ref. : GEBA)

Extreme summers of 2003 and 2010 : Normalized JJA temperature anomalies

Number of days with Tmax > Q80

92 0

Extreme summers : JJA SWI anomalies

ERA-Land

R-CTRL

A-CTRL

R-CTRL

A-CTRL

Conclusions

- Soil moisture is a key boundary condition for dynamical forecast systems. In our models, the European summer climate is sensitive to SM even at high latitudes.
- Applying the same setup to a GCM brings similar conclusions for North America (and Asia to a lesser extent)
- SM is a potentially **under-estimated driver of predictability**
- Result supported by Bunzel et al. (2018): skillful summer forecasts achieved for Northern Europe with a refined land-surface component
- Future work : SM memory and contribution to the extreme 2018 summer in Scandinavia

More details in :

Ardilouze, C., Batté, L., Déqué, M., van Meijgaard, E., van den Hurk, B. : Impact of soil moisture on European summer climate in numerical experiments. Clim Dyn (in press)

doi:10.1007/s00382-018-4358-1

Thank you

Supplemental slide

JJA Precipitation correlation against GPCC (experiment with CNRM-CM5 GCM)

CTRL

SOIL

