

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth

WCRP Int. Conf. on S2D Prediction, Boulder, 18 September, 2018

Andrea Alessandri (KNMI, ECMWF, ENEA)

Contributions: Franco Catalano, Matteo De Felice (ENEA) Bart Van Den Hurk (KNMI) Gianpaolo Balsamo, Souhail Boussetta (ECMWF) Francisco Doblas Reyes (BSC) Paul Miller (Lund University)

http://projects.knmi.nl/proceed/

Outline

Motivation

The EC-Earth ESM, developed from the ECMWF prediction system, lacks sensitivity to vegetation variability

Introduction of an effective vegetation cover as a function of vegetation Leaf Area Index (LAI)

Multi-scale simulation/prediction enhancements in EC-Earth

- > Effects on surface climatology and 20C climate change signal
- > Effects on prediction skill at seasonal and weather time-scales
- > Effects on potential predictability at decadal time-scale

Discussion

Motivation Need to improve coupling of the modeled vegetation biophysical processes in EC-Earth

Coupling vegetation biophysics to EC-Earth

Improved coupling of vegetation to EC-Earth: implementation of effective vegetation cover as a function of vegetation Leaf Area index

PAPER PUBLISHED:

A. Alessandri, F. Catalano, M. De Felice, B. Van Den Hurk, F. Doblas Reyes, S. Boussetta, G. Balsamo, and P. Miller, 2017: Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth, Clim. Dyn. doi:10.1007/s00382-016-3372-4

Implementation of effective vegetation cover (Ceff) as a function of vegetation Leaf Area index

Effective fractional vegetation cover

 $Ceff(t) = Cv_L(LAI[t]) \cdot A_L + Cv_H(LAI[t]) \cdot A_H$ low, high vegetation

Bare Soil fraction bareS = 1 - Ceff(t)

 A_{H} L,H low, high vegetation A_{L}, A_{H} Max fractional coverages C_{L}, C_{H} Vegetation density

Time varying

- i. Evapotranspirating surfaces
- ii. Roughness length
- iii. The contribution of root density of each vegetation-type to the **Field Capacity**
- vii. Surface Albedo

Effect on the temperature bias of EC-Earth

MODIF vs. CTRL

Alessandri et al., 2017, Clim Dyn

2m temperature: Sensitivity vs. BIAS DJF

Alessandri et al., 2017, Clim Dyn

Sensitivity: 2m Temperature, Albedo and Bowen Ratio DJF

Effect on Surface Air Temperature change in historical 20C simulations [1980-2009] minus [1910-1939]

Alessandri et al., 2017, Clim Dyn

Surface air temperature change: (2009-1980) minus (1939-1910)

1

WINTER DJF

Surface air temperature change: (2009-1980) minus (1939-1910) MODIF minus Control

Sensitivity of seasonal climate forecasts to modified parameterization

MODIF vs. CTRL

LAI prescribed from observations (LAI3g, Zhu et al, 2013) [1982-2009, 10members, 7months hindcasts, 1st May and 1st November]

Alessandri et al., 2017, Clim Dyn. Catalano et al., 2017, In Preparation

🌌 Catalaı

Seasonal hindcasts - 1st Nov start date - 2m Temperature Correlation differences (MODIF minus CTRL) vs. ERA-Interim

Seasonal hindcasts - 1st May start date - Precipitation Correlation differences (MODIF minus CTRL) vs. ERA-Interim

Sensitivity of Numerical Weather Forecasts Case study for 4-days ECMWF NWPs in March 2015

MODIF vs. CTRL

Alessandri et al., 2017, Clim Dyn

Case study for 4-days ECMWF Weather forecasts in March 2015 **MODIF** minus **CTRL** (FC +72hr) & comparison with analysis

1 8

Case study for 4-days ECMWF Weather forecasts in March 2015 **MODIF** minus **CTRL** (FC +72hr) & comparison with analysis

Potential predictability at decadal time scale due to vegetation effective cover change

MODIF vs. CTRL

Potential predictability: "model world" (MODIF) assumed as "real world" [1960-2005, 7 members, 5yrs hindcasts, every 5 yrs]

Alessandri et al., 2017, Clim Dyn.

Seasonal-to-decadal climate Prediction for the improvement of European Climate Services

Decadal potential predictability (MODIF minus CTRL) Correlation differences vs. historical simulation (real world)

Alessandri et al., 2017, Clim Dvn.

Conclusions and Plans

A realistic representation of vegetation biophysical processes can improve Earth system simulation/prediction at multiple time-scales.

The inclusion of a realistic effective vegetation cover parameterization in EC-Earth leads to:

- Considerable improvement of surface climate bias, variability and response to 20C climate-change forcing
- Significant multi-scale enhancement of seasonal and weather « real » predictions (hindcasts) and of decadal potential predictability.

Above results motivate further research and enhancements in land/ vegetation representation.

- EU H2020 MSCA grant "PROCEED" <u>http://projects.knmi.nl/proceed</u>
- Proposal for MME project aimed at quantifying the impact of land Earth system processes and feedbacks on seasonal climate forecasts (GLACE-ESM) [Poster P-B6-01 19 Sept. Foothills Lab]

LAI memory:predictability of monthly LAI interannual anomalies using SARIMA model (10 years training).

1st November start date

LAI monthly data [1982-2014] (GLCF GLASS <u>http://glcf.umd.edu/data/lai/</u> Xiao Z., et al., 2013)

LAI memory:predictability of monthly LAI interannual anomalies using SARIMA model (10 years training).

1st May start date

LAI monthly data [1982-2014] (GLCF GLASS <u>http://glcf.umd.edu/data/lai/</u> Xiao Z., et al., 2013)

LAI memory: autocorrelations of seasonal-mean interannual anomalies

