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Outline 

Discussion 

The EC-Earth ESM, developed from the ECMWF prediction system, 
lacks sensitivity to vegetation variability 
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Multi-scale simulation/prediction enhancements in EC-Earth 

	 

					Motivation 

Introduction of an effective vegetation cover as a function 
of vegetation Leaf Area Index (LAI) 

Ø  Effects on surface climatology and 20C climate change signal 

Ø  Effects on prediction skill at seasonal and weather time-scales 

Ø  Effects on potential predictability at decadal time-scale 



Motivation 
Need to improve coupling of the modeled vegetation 

biophysical processes in EC-Earth 
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Coupling	strategy	

Coupling	vegetation	biophysics	to	EC-Earth	

Land 
H-TESSEL 

Atmosphere	
IFS	EC-Earth2.3 

Vegetation 
LAI (High/Low veg.) 
Vegetation-cover (High/Low veg)  

Vegetation affects 
coupling parameters: 
albedo, roughness lenght, 
field capacity, effective 
cover on bare soils/snow 

Climate 
radiation, temperature, precip,… 
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Improved coupling of vegetation to EC-Earth: 
implementation of effective vegetation cover as a function of 

vegetation Leaf Area index 
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Time 
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Effective 

Bare Ssoil 

Time varying 
Effective 

Vegetation 
fraction 

 Fixed Bare 
Soil fraction 

Fixed  
Vegetation 

fraction 

SNOW SNOW 

Effective	fractional	vegetation	cover	

bareS =1−Ceff (t)
Bare	Soil	fraction	

i.   Evapotranspirating surfaces
ii.   Roughness length
iii.  The contribution of root density of each 

vegetation-type to the  Field Capacity
vii.  Surface Albedo

Implementation of effective vegetation cover (Ceff) as a 
function of vegetation Leaf Area index 

Ceff (t) =CvL (LAI[t]) ⋅AL +CvH (LAI[t]) ⋅AH

Time varying 

AL,AH  Max fractional coverages
CL,CH  Vegetation density
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L,H  low, high vegetation



Implementation of effective vegetation cover as a 
function of vegetation Leaf Area Index 

kL,H

LAIT = f (CvL +CvH )

CvL,H = f (LAIL,H )

LAI and vegetation 
density (Cv) Time 
varying & interactively 
coupled 

                         Implemented effective cover interannual variability (std dev) 
                         DJF Cvtot                          JJA Cvtot 

CvL,H (t) = f (LAIL,H ) = (1− e
−k⋅LAI )α
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Effect on the temperature bias of EC-Earth 
 

MODIF 
vs.  

CTRL 
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Alessandri et al., 2017, Clim Dyn 



2m temperature: Sensitivity vs. BIAS      DJF 

																														EC-Earth2.4	BIAS	(CTRL)	

Dots: no significance 
of differences at 
10% level  

  1979-2009 historical simulations  
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Alessandri	et	al.,	2017,	Clim	Dyn		

																														T2m	SENSITIVITY	(MODIF	minus	CTRL)		 WINTER	DJF	



WINTER	DJF																															SENSITIVITY	(MODIF	minus	CTRL)			
																								

																		SURFACE	ALBEDO	

																		BOWEN	RATIO	

																			TEMPERATURE	2	Meters	

Sensitivity: 2m Temperature, Albedo and Bowen Ratio              
DJF 

Dots: no significance 
of differences at 
10% level  

1
0 



Effect on Surface Air Temperature change in historical 20C 
simulations 

[1980-2009] minus [1910-1939] 
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Alessandri	et	al.,	2017,	Clim	Dyn	



OBSERVATION	CRU	
										2m	Temperature		

					CTRL	
				2m	Temperature	

					MODIF	
				2m	Temperature	

WINTER	DJF	

Surface air temperature change: (2009-1980) minus 
(1939-1910) 
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																																	MODIF	minus	CTRL			
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Surface air temperature change: (2009-1980) minus 
(1939-1910)   MODIF minus Control 

High		vegetation	
cover	change	

albedo	

2m	Temperature	
WINTER	DJF	



Sensitivity of seasonal climate forecasts to modified 
parameterization 

 
MODIF  

vs. 
CTRL 

 
LAI prescribed from observations (LAI3g, Zhu et al, 2013) 
[1982-2009, 10members, 7months hindcasts, 1st May and 

1st November] 
 

Catalano	et	al.,	2017,	In	Preparation	
Alessandri	et	al.,	2017,	Clim	Dyn.		

1
4 



Seasonal hindcasts - 1st Nov start date   - 2m Temperature 
Correlation differences (MODIF minus CTRL)  vs. ERA-Interim 

WINTER	DJF	
1-month	lead	

T2M		

(dotted non 
significant 10% 

level) 

Δ skill Albedo 

North America (40-70N; 140-60W) 

i = each single year

Regression line (coefficient 
significant at 5% level) 
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Δ  MODIF minus CTRL

Δ
Xmod
i − Xmod( ) Xobs

i − Xobs( )
σmod

X ⋅σ obs
X

MODIF minus CTRL 
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Seasonal hindcasts - 1st May start date - Precipitation 
Correlation differences (MODIF minus CTRL) vs.  ERA-Interim 

Prec		 MODIF minus CTRL SUMMER	JJA	
1-month	lead	

(dotted non 
significant 10% 

level) 

i = each single year

East Europe (35-60N; 35-70E) 

Δ skill  Evaporation 
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Regression line (coefficient 
significant at 5% level) 

Δ  MODIF minus CTRL

Δ
Xmod
i − Xmod( ) Xobs

i − Xobs( )
σmod

X ⋅σ obs
X
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Sensitivity of Numerical Weather Forecasts 
Case study for 4-days ECMWF NWPs in March 2015  

 
MODIF  

vs. 
CTRL 

 

Alessandri	et	al.,	2017,	Clim	Dyn	
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Case study for 4-days ECMWF Weather forecasts in March 2015  
MODIF minus CTRL (FC +72hr) &  comparison with analysis 
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Change of Error compared with analysis 

Modified minus Control 



Case study for 4-days ECMWF Weather forecasts in March 2015  
MODIF minus CTRL (FC +72hr) &  comparison with analysis 

Forecast Albedo Diffrence VegCLUM - CTL for 2015031372 -
-0.24 -0.2 -0.16 -0.12 -0.08 -0.04 -0.02 -0.01 0.01 0.02 0.04 0.08 0.12 0.16 0.2 0.24

ΔAlbedo

Modified minus Control 

Change of Error compared with analysis 

Forecast Albedo Diffrence VegCLUM - CTL for 2015031372 -
-0.24 -0.2 -0.16 -0.12 -0.08 -0.04 -0.02 -0.01 0.01 0.02 0.04 0.08 0.12 0.16 0.2 0.24 -0.24          -0.2          -0.16          -0.12         -0.08         -0.04         -0.02         -0.01                           0.01         0.02          0.04          0.08          0.12          0.16           0.2           0.24 
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Potential predictability at decadal time scale due to 
vegetation effective cover change 

 
MODIF  

vs. 
CTRL 

 
Potential predictability: “model world” (MODIF) assumed as 

“real world” 
[1960-2005, 7 members, 5yrs hindcasts, every 5 yrs] 

Alessandri	et	al.,	2017,	Clim	Dyn.	
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Alessandri	et	al.,	2017,	Clim	Dyn.	

Global	annual	mean	correlation	
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          CTRL 
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          MODIF 
          CTRL 

Decadal potential predictability (MODIF minus CTRL)   
Correlation differences vs. historical simulation (real world) 

(marks	are	for	significant	difference	10%	level)	

(dotted	non	significant	10%	level)	

T2M		 PRE		
2-years	mean	

3	years	lead	time	

          MODIF 
          CTRL 
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Conclusions and Plans 

2
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A realistic representation of vegetation biophysical processes can 
improve Earth system simulation/prediction at multiple time-scales.  

The inclusion of a realistic effective vegetation cover parameterization 
in EC-Earth leads to: 
§  Considerable improvement of surface climate bias, variability and 

response to 20C climate-change forcing 
§  Significant multi-scale enhancement of seasonal and weather 

« real » predictions (hindcasts) and of decadal potential 
predictability. 

Above results motivate further research and enhancements in land/
vegetation representation. 
Ø  EU H2020 MSCA grant “PROCEED”		http://projects.knmi.nl/proceed	
Ø  Proposal for MME project aimed at quantifying the impact of land 

Earth system processes and feedbacks on seasonal climate forecasts 
(GLACE-ESM)  [Poster P-B6-01   19 Sept.  Foothills Lab]  



LAI monthly data [1982-2014] (GLCF GLASS http://glcf.umd.edu/data/lai/  Xiao Z., et al., 2013) 

Lead 0 Lead 1 month 

Lead 2 months Lead 3 months 

LAI memory:predictability of monthly LAI interannual 
anomalies using SARIMA model (10 years training). 

1st November start date 



1st May start date 

LAI memory:predictability of monthly LAI interannual 
anomalies using SARIMA model (10 years training). 

LAI monthly data [1982-2014] (GLCF GLASS http://glcf.umd.edu/data/lai/  Xiao Z., et al., 2013) 

Lead 0 Lead 1 month 

Lead 2 months Lead 3 months 



Lag 0 seas Lag 1 seas Lag 1 year 

Lag 2 years Lag 3 years 

LAI memory: autocorrelations of seasonal-mean interannual 
anomalies 	

LAI DATA [1982-2014]  (GLCF GLASS http://glcf.umd.edu/data/lai/  Xiao Z., et al., 2013). 


