Projected Changes in S2D Hydroclimate Predictability in North America in CESM-LE

Candida Dewes, Matt Newman, Sanjiv Kumar

Michael Alexander, Sang-Ik Shin, Clara Deser, Adam Phillips

Grant RC-2711: Developing an Experimental Predictive Framework for Climate Regime Shifts and Their Impacts Within a 2-20 Year Outlook Window

Goals

- Test a simplified linear regression model framework to uncover potential predictability of the North American hydroclimate
- Understand predictability of changes in drought characteristics between consecutive 20-year periods, in the context of long-term changes

Approach

- "Perfect model" framework is tested within the CESM Large Ensemble (40 members, 20th century & RCP8.5 radiative forcings)
- Soil moisture predictability represents the integrative response of land to atmospheric forcing
- Analyses were done on six consecutive **20-year periods** (1950-69, 1970-89,...,2050-69); results contrast the first and the last periods as they illustrate the largest shifts

Changes in soil moisture mean and variance

- 12-month running means of root zone (1 m) soil moisture
- Means and variances computed over 20-year periods
- Means computed before detrending
- Variances computed on (detrended) anomalies to the ensemble mean

Changes in soil moisture mean and variance

- 12-month running means of root zone (1 m) soil moisture
- Means and variances computed over 20-year periods
- Variances computed on (detrended) anomalies to the ensemble mean

"observational reference" (not a direct comparison)

17-21 September 2018 | NCAR, Boulder, CO

Changes in soil moisture mean and variance

 Externally-forced soil moisture mean changes are small but significant over the entire period, relative to changes in variability

Cooperative Institute for Research in Environmental Sciences

Changes in drought events in CESM-LE

- "detrended anomalies" are anomalies relative to the respective 20-year climatology
- "total anomalies" are anomalies relative to 1970-2009 climatology, and include the externally-forced changes in mean soil moisture
- Changes in drought events appear to be mostly driven by changes in the mean

Changes in drought events in CESM-LE

Potential sources of predictability of soil moisture anomalies

Land surface memory

- Local forcing
- Integrates landatmosphere feedbacks

SST variability

Remote forcing

What is the impact of Pacific SSTs on soil moisture predictability?

Changes in Tropical SST variability in CESM-LE

- Subtle increase in variance in tropical Pacific SST
- Increase in variance explained by the leading mode (ENSO)

Changes in Tropical SST variability in CESM-LE

- Significant increase (2.5 °C) in mean
 SST of Niño 3.4 region
- Modest increase (< .25 °C) in Niño 3.4 standard deviation, with larger spread of changes across ensemble members

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA

Three Simple Linear Models

• "Memory": single predictor of soil moisture anomaly is the anomaly observed 12 months prior

$$S_{(t)} = a S_{(t-12)} + \varepsilon_a$$

 "ENSO": single predictor of soil moisture anomaly is the ENSO PC value for same month (assumes perfect knowledge of ENSO)

$$S_{(t)} = b E_{(t)} + \varepsilon_b$$

 "Memory + ENSO": both soil moisture memory and ENSO are predictors of a soil moisture anomaly

$$S_{(t)} = \alpha S_{(t-12)} + \beta E_{(t)} + \varepsilon$$

Spatial pattern of regression coefficients

- Land surface memory is a strong predictor of soil moisture anomalies across the Canadian Plains; much weaker throughout rest of North America
- ENSO is relatively strong predictor across south-central and southeastern US
- Memory and ENSO coefficients obtained in the bivariate model were nearly identical in spatial pattern and magnitude

Skill of regression models changes over time

Skill = corr $(S_{(t)}, \hat{S}_{(t)})$

- Matches pattern and absolute magnitude of regression coefficients
- Skill of ENSO predictor increases, while Memory slightly decreases

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA

Projected changes in signal-to-noise ratio

$$S2N = \sqrt{\frac{var(\hat{S}_{(t)})}{var(\varepsilon)}}$$

- Mostly increases over southern US
- Decreases over Canadian Plains

Projected changes in signal-to-noise ratio

0.5

Using the "Memory+Enso" model to generate synthetic soil moisture anomalies (Oct-Sep annual means)

Randomized initial soil moisture condition (i.e. $S_{(-1)}$)

 $E_{(t)}$ 20-yr sequences taken from CESM-LE; bootstrapped to generate 100 x 40 realizations Randomized error

Comparing synthetic drought events to CESM-LE

17-21 September 2018 | NCAR, Boulder, CO

Comparing synthetic drought events to CESM-LE

Concluding Remarks

- For most of North America, CESM-LE projects increased hydroclimate predictability in the warmer climate, even though no significant change in overall hydroclimate variability is projected.
- This is due primarily to a strengthening of the ENSO-related predictable component, which coincides with a pronounced increase in the mean and slight increase in the variance of tropical Pacific SSTs.
- Predictability due to land surface memory remains the same or slightly decreases.

Concluding Remarks (cont'd)

- For most of North America, CESM-LE projects increased hydroclimate predictability in the warmer climate, even though no significant change in overall hydroclimate variability is projected.
- This is due primarily to a strengthening of the ENSO-related predictable component, which coincides with a pronounced increase in the mean and slight increase in the variance of tropical Pacific SSTs.
- Predictability due to land surface memory remains the same or slightly decreases.
- For some regions (e.g. SW and Great Plains), CESM-LE projects overall drying that will increase the duration and severity of drought defined relative to late 20th century climate normal. However, drought variability itself is not projected to change significantly.
- The implication for decadal drought forecasts (in the CESM-LE world, at least) is that they will need to consider the mean change over the forecast period; changes in higher moments may not need to be considered.
- A linear model considering land surface memory and ENSO as predictors of annual soil moisture anomalies satisfactorily reproduces CDFs of drought severity and duration in CESM-LE, as well as their increased predictability.

Concluding Remarks (cont'd)

- For most of North America, CESM-LE projects increased hydroclimate predictability in the warmer climate, even though no significant change in overall hydroclimate variability is projected.
- This is due primarily to a strengthening of the ENSO-related predictable component, which coincides with a pronounced increase in the mean and slight increase in the variance of tropical Pacific SSTs.
- Predictability due to land surface memory remains the same or slightly decreases.
- For some regions (e.g. SW and Great Plains), CESM-LE projects overall drying that will increase the duration and severity of drought defined relative to late 20th century climate normal. However, drought variability itself is not projected to change significantly.
- The implication for decadal drought forecasts (in the CESM-LE world, at least) is that they will need to consider the mean change over the forecast period; changes in higher moments may not need to be considered.
- A linear model considering land surface memory and ENSO as predictors of annual soil moisture anomalies satisfactorily reproduces CDFs of drought severity and duration in CESM-LE, as well as their increased predictability.

Thank you! Qs?

Extra slides

Cooperative Institute for Research in Environmental Sciences

UNIVERSITY OF COLORADO BOULDER and NOAA

CLM-OBS (1958-2007)

estimating soil moisture with the "Memory + ENSO" model (using **Hadisst v.5** for ENSO PC)

