

Subsurface variability and teleconnections in the Indian Ocean

Chris Chapman, Bernadette Sloyan, Terry O'Kane

Didier Monselasen, Matt Chamberlain, James Risbey

CSIRO Oceans and Atmosphere Decadal Forecasting Project www.csiro.au

CSIRO

Indian Ocean Variability: Slide 2 of 26

- Some signature in SSH altimetry (Briol & Morrow 2000);
- Intrinsic mode found in long, ocean-only, coarse resolution models (O'Kane et al. 2014; Wolfe et al. 2017) and SODA reanalysis (Vargas-Hernández et al. (2015);
- Possible signature in sea-surface salinity (Menezes et al. (2014);

CSIRC

• Not yet noted in in-situ measurements (we're working on it).

Coupled Climate Model

- We use the DFP's Climate Analysis Forecast Ensemble (CAFÉ) modelling system (O'Kane et al. 2018);
- Very similar to GFDL's CM2.1 (modified ocean grid);
- MOM4 ocean model; AM2 atmosphere; SIS sea-ice; LM2 land surface;
- \sim 1° grid in the ocean, telescopes to \sim 1/3° near the equator, 2.5° in the atmosphere;
- Restoring to WOD climatology below 2000m depth (1 year restoring time scale);

CSIRC

Coupled Climate Model

• 500 year long control simulation - final 200 years used after the model is in an "almost" equilibrium state;

CSIRO

Indian Ocean Variability: Slide 5 of 26

CSIRO

3D complex (Hilbert) EOFs of σ_{θ} (referenced to the surface) Colors: real part; contours: imaginary part

In band variance of σ_{θ} (surface referenced)

Indian Ocean Variability: Slide 7 of 26

CSIRO

Hovmöller (longitude/time) plots of σ_{θ} along the northern (left) and southern (right) waveguides

Indian Ocean Variability: Slide 8 of 26

Summary of the Propagating Disturbance

- Basin crossing time scale: \sim 4 years;
- Length Scale: 500–1000km;
- Propagation speed: 10cm/s (substantially slower than theoretical Rossby wave speed);

CSIRC

- Likely substantially non-linear;
- Shows evidence of topographic interaction;

To quantify the influence of the propagating disturbance on the surface ocean, we calculate the *Dynamic Height Anomaly* or *Relative Geostrophic Streamfunction* from model temperature and salinity:

$$\psi_g(x, y, t; p, p_{\text{ref}}) = -\int_{p_{\text{ref}}}^p \delta(x, y, t; p') \, dp' \tag{1}$$

CSIRC

where:

 $\delta = \text{specific volume anomaly (function of temperature and salinity);} and$

$$\mathbf{e}_z \times \nabla \psi_g(p, p_{\text{ref}}) = f[\mathbf{u}(p) - \mathbf{u}(p_{\text{ref}})]$$

Has the benefit of being a *depth integrated measure*

Essentially the thermal wind.

-1.0 Geostrophic Streamfunction (m.².s⁻¹) 0.5 0.0 -1.0 -1.5

CSIRO

Colors: Geostrophic streamfunction anomaly referenced to 500db Vectors: Surface Geostrophic Current (relative to 500db flow)

Indian Ocean Variability: Slide 11 of 26

Top: SST; Middle: Temperature depth/time profile; Bottom: v_g depth/time profile

Indian Ocean Variability: Slide 12 of 26

CSIRO

CSIRO

Lagged autocorrelation function at lags between 1 month and 10 years

Indian Ocean Variability: Slide 13 of 26