

The Pacific Decadal Precession: Our current understanding of its dynamics, regional climate effects, and predictability

> Prof. Bruce Anderson Dep't of Earth and Environment Boston University

Introduction

- The impacts of human-induced climate change upon nature and society, both historically and over the next century, have been researched extensively in the climate literature
- However, climate variations of equal or greater magnitude can occur over just 5-15 years in response to persistent, multi-year shifts in atmospheric pressure patterns and concomitant changes to regional-scale circulations
- Climate manifestations of such shifts in turn impose significant stresses on physical, biological and socioeconomic systems
 - Extended droughts across California
 - Exceptional warmth in the Northeast Pacific Ocean
 - Extreme Fire Weather Conditions from California to Alaska

Introduction con't.

- Typically, research to understand, anticipate, and prepare for these regional effects invoked well-known modes of decadal climate variability -e.g., the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO), and the North Pacific Gyre Oscillation (NPGO).
- In this talk, we will discuss the sources and physical processes giving rise to a recently revealed mode of decadal climate variability termed the <u>Pacific Decadal Precession</u> (PDP)
 - We will show that the PDP and its time evolution represents a robust mode of low-frequency atmospheric variability
 - We will characterize the PDP's local and teleconnected interactions with, and impacts on, multiple earth system components, including atmosphere, ocean, terrestrial, and cryospheric systems
 - We will also discuss how to generate long-lead, multi-annual forecasts of these regional climate impacts by leveraging the systematic evolution of the PDP's teleconnection phases

Predictability of Observed Precipitation

Potential Predictability for Annual Precip.

Northwest

Lead and Lag Teleconnection Patterns

PDP Captured by Leading Modes of Variability

EOF(2): Z(850hPa)

EOF(3): Z(850hPa)

N.Pac. Phase Space: PC2,3 Lead/Lag Correlation of N.Pac. Decadal PC(2,3) 3 1949 2015 0.6 2 0.4 Correlation 1 0.2 PC(3) 0 0 -0.2 -1 -0.4 -2 -0.6 (a) (b) -3 -3 -2 2 -5 10 -1 -10 0 3 5 0 PC(2) Lead/Lag Year (<-Lead Year; Lag Year->)