Improving the predictability of streamflow for hydropower production in Canada using S2S ensemble meteorological forecasts

International Conference on Sub seasonal to Decadal Prediction - Boulder, USA, 17-21 Sept. 2018

Rachel Bazile, PhD Student, UdeS Marie-Amélie Boucher, Professor, UdeS Luc Perreault, Researcher, IREQ Robert Leconte, Professor, UdeS

HYDRO ELECTRICITY IN QUÉBEC

- Hydro power represents 99% of total energy produced by Hydro-Québec
- 10 main reservoirs
- Approx. 10 000 MW on the 35 000 MW installed ^[1]
- Strong hydrological cycle

PERFORMANCE OF ECMWF SYSTEM4

Objective

Compare the performance of System4 with SEAS5 and ECMWF S2S database for time delays 1 to 30 days.

Figure 5. CRPSS of ensemble forecasts of monthly inflow volume for reservoirs, produced by corr-DSP compared to (1) sim-HSP and (2) ESP. CRPSSs are shown by watershed, season and lead time. [2]

Bazile, R., Boucher, M. A., Perreault, L., & Leconte, R. (2017). Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate. Hydrol. Earth Syst. Sci, 21, 5747-5762.

METHODOLOGY				Meteorological forecasts S2S ECMWF System4 ECMWF SEAS5 ECMWF
Forecasting system	Lead-time (days)	Number of forecasts (1995- 2014)	Members	 Temporal and spatial aggregation Bias characterisation and
S2S ECMWF <mark>[3]</mark>	46	1719	5 or 11	correction by Linear Scaling ^[7]
System4 ^[4]	215	240	15 or 51	
SEAS5 ^[5]	215	240	25	Hydrological model HSAMI ^[8]
ESP ^[6]	As needed	As needed	64	Verification – Sim and obs
	1		1	 CRPSS ^[9] Reliability diagram

CRPSS -General performance

5

CRPSS – Sources of uncertainty

CRPSS – Sources of uncertainty

CRPSS – Sources of uncertainty

RELIABILITY DIAGRAM – Manic 5

9

ESP is more reliable than dynamical forecasts

Limited reliability when compared with observations even for ESP

CRPS by **SEASON** 10

12 DISCUSSIONS and CONCLUSION

- Potential for dynamical s2s forecasts to replace ESP in hydrology for the 1st 30 days depending on season and watersheds
- Improvement of hydrological modeling (data assimilation, model structure and calibration, post-processing)
- Difficulty to have a fair comparison between different forecasting systems (sampling, ensemble size, issue dates) to determine the best product to use

Next steps

THANK YOU!

Any questions?

You can find me at

rachel.bazile@usherbrooke.ca

14 REFERENCES AND CREDITS

Presentation template by SlidesCarnival

[1] Hydro-Québec (2017). *Rapport annuel 2017*. [online] pp.1 2 5. Available at: http://www.hydroquebec.com/data/documents-donnees/pdf/rapport-annuel.pdf [Accessed 30 Aug. 2018].

[2] Bazile, R., Boucher, M. A., Perreault, L., & Leconte, R. (2017). Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate. Hydrol. Earth Syst. Sci, 21, 5747-5762.

[3] Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., ... & Hendon, H. (2017). The subseasonal to seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society, 98(1), 163-173.

[4] Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., ... & Vitart, F. (2011). The new ECMWF seasonal forecast system (System 4) (p. 49). Reading, U. K: European Centre for Medium-Range Weather Forecasts.

[5] [online] Available at: <u>https://www.ecmwf.int/en/forecasts/documentation-and-support/long-range</u> [Accessed Aug. 2018].

[6] Day, G. N. (1985). Extended streamflow forecasting using NWSRFS. Journal of Water Resources Planning and Management, 111(2), 157-170.

[7] Crochemore, L., Ramos, M. H., & Pappenberger, F. (2016). Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrology and Earth System Sciences, 20(9), 3601-3618.

[8] Fortin, V. (2000). Le modèle météo-apport HSAMI: historique, théorie et application, Rapport de recherche (Révision 1.5). Tech. Rep., Institut de Recherche d'Hydro-Québec.

[9] Matheson, J. E., & Winkler, R. L. (1976). Scoring rules for continuous probability distributions. Management science, 22(10), 1087-1096.

[10] Ferro, C. A., Richardson, D. S., & Weigel, A. P. (2008). On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteorological Applications, 15(1), 19-24.