Sub-Seasonal to Seasonal (S2S) Climate Products for Water Management

Sarah Baker^{1,2}, Andy Wood³, Balaji Rajagopalan¹

September 19, 2018

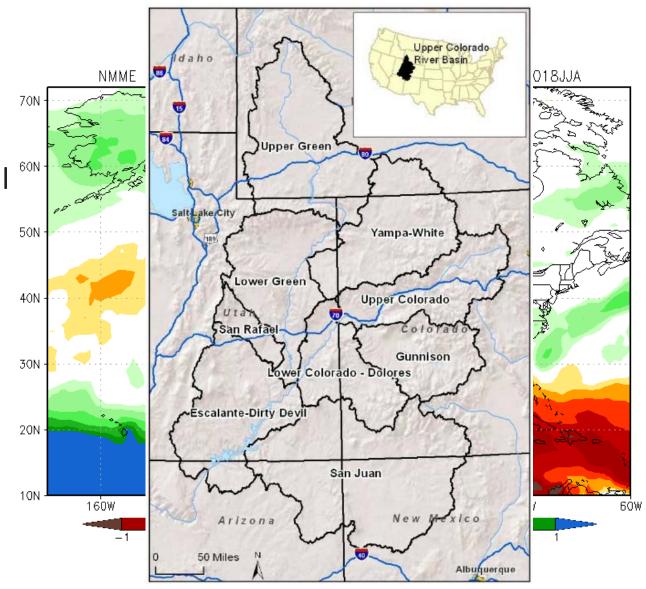
(1) Civil, Env. and Arch. Engineering, University of Colorado Boulder, CO; (2) Bureau of Reclamation, Boulder, CO; (3) National Center for Atmospheric Research, Boulder, CO

Sponsored by NOAA MAPP-CTB

Motivation

The potential value of S2S climate predictions has not fully been realized by water sector stakeholders.

- Products are not aligned with space-time analysis needs
- Products are not in a format that users can easily process
- Products are biased relative to watershed climatologies
- Products are perceived to have poor reliability



Callahan et al., 1999; Kirchhoff et al., 2013; Raff et al., 2013; Rayner et al., 2005; White et al., 2017

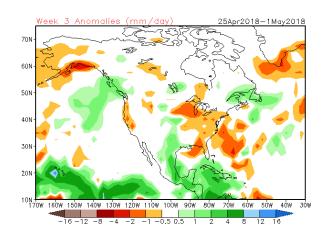
Examples of S2S forecasts

Typical S2S operational product

It is possible to drill down spatially & temporally, but ...

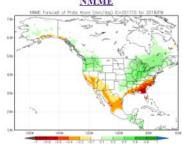
How could they be used?

The goal of this project is to make climate forecasts more useful to water managers by
(1) applying climate forecasts to watershed scale and creating a real-time product
(2) improving forecasts on a watershed scale
(3) transition prototype products to CPC or NWC


Streamflow Forecasts - snowpack

Instream flows

Data – Climate Forecasts


NCEP Climate Forecast System v2 (CFSv2)

- Fully coupled atmosphere-oceanland model
- Forecasts:
 - Four initializations daily at 6-hr time steps
 - 4 forecasts each model initialization for 16 traces daily
 - Forecast length: 45 days to 9 months
- Hindcasts: 1999-2010
 - 4 traces daily

North American Multi-Model Ensemble (NMME)

- 7 Global Climate Models
 - CFSv2 NOAA NCEP
 - NASA GEOS5
 - NCAR_CCSM4 CCSM4.0
 - GFDL CM2.1
 - GFDL_FLOR CM2.5 [FLORa06 and FLORb01]
 - CMC3 Environment Canada CanCM3
 - CMC4 Environment Canada CanCM4
- Forecasts: 2011-present
 - Monthly timestep leads of 7 months
 - Available monthly on the 8th
- Hindcasts: 1982-2010

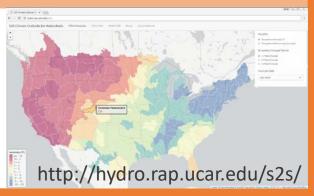
Raw Hindcasts & Forecasts

- NMME (monthly)
- CFSv2 (sub-daily)
- NLDAS (obs)

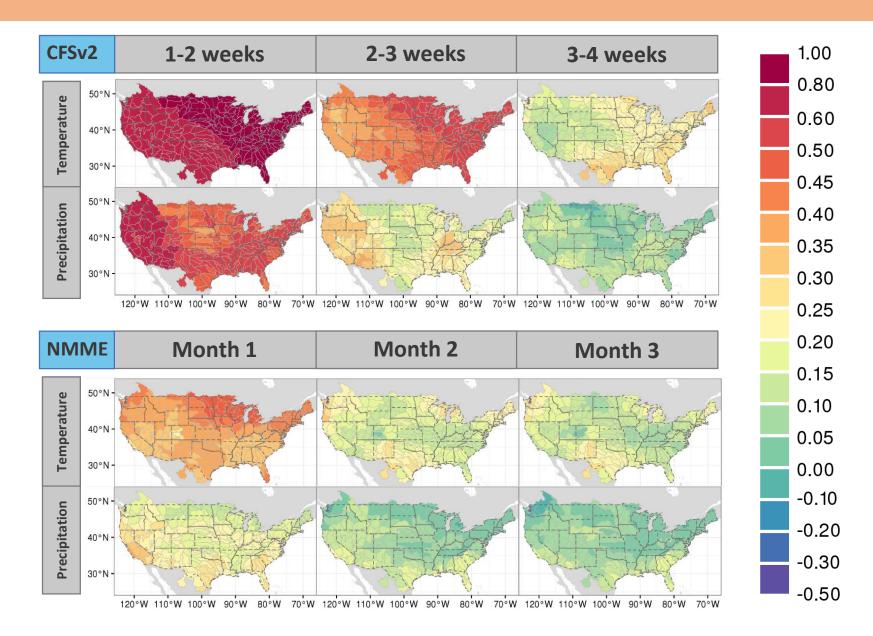
Verification

- Anomalies calculated based on climatology
- Obs Data NLDAS
- Anomaly correlation, bias, and percent bias calculated for each model, lead, and season

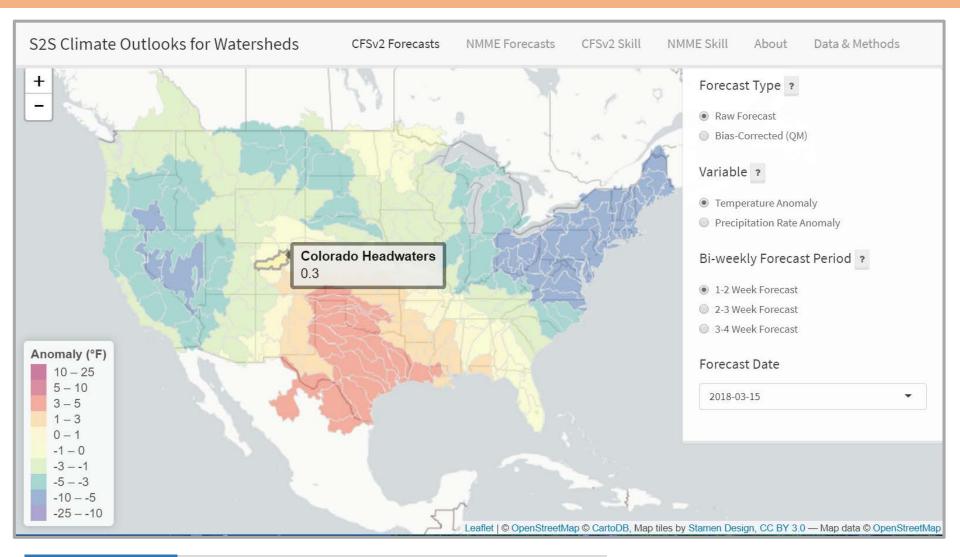
Spatial & Temporal Processing


- Re-project (1/2 degree grid)
- Temporally average
 - CFSv2: bi-weekly (1-2, 2-3, 3-4 wk)
 - NMME: monthly to seasonal
- Spatially average to 202 USGS HUC4 watersheds (conservative remapping)

Post-Processing

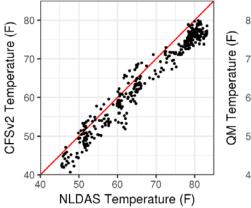

- Bias-correction, calibration of raw data
- Extremes predictions

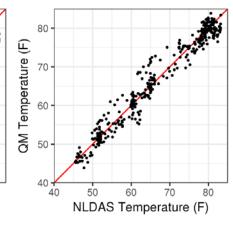
S2S Products

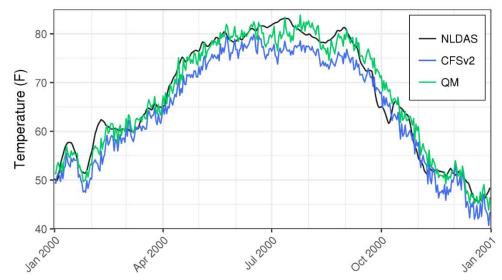

- Real-time Forecasts
 - CFSv2 bi-weekly forecast products updated daily
 - NMME monthly forecast products updated monthly
- Benchmark Skill of Hindcasts

Raw Anomaly Correlation

S2S Product Demo


Website http://hydro.rap.ucar.edu/s2s/


Bias-correction – Quantile Mapping


- Bias-corrected using the Quantile Mapping (QM) method
- Estimating a pair of cumulative distribution functions for the CFSv2 reforecasts and NLDAS or each variable, lead, watershed, and time period (climatologies based on 15-day window)
- Results:
 - Removes systematic bias
 - Did not improve skill

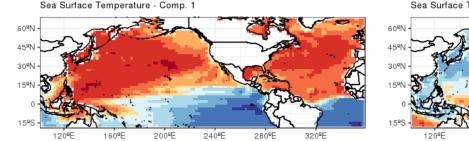
Rio Grande-Amistad Watershed

Skill Improvement through Post-processing

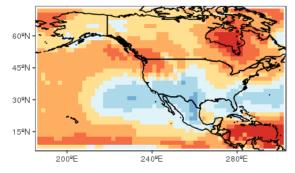
• Example: PLSR (Partial Least Squares Regression) is an approach similar to principal component analysis that finds the linear combination of a large number of predictors that maximizes the explained variance of the predictand

CFSv2-based Predictors: 1999-2010

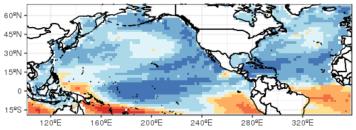
- 1. 500 mb Geopotential height 6. Zonal Winds (850 mb)
- 2. Specific Humid 2m
- 3. Surface Pressure
- 4. Sea Level Pressure
- 5. Precipitable Water

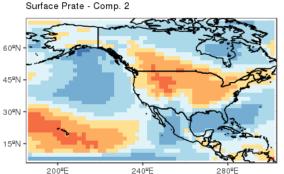

- 7. Meridional Winds (850 mb)
- 8. Sea Surface Temperature
- 9. Outgoing Longwave Radiation
- 10. Surface Temperature 2m

11. Surface Prate

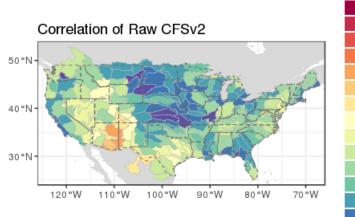

PLSR Loadings – Colorado Headwaters

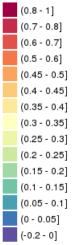
Jan 3-4 Week Precipitation Forecast



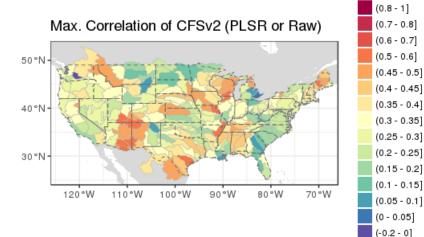


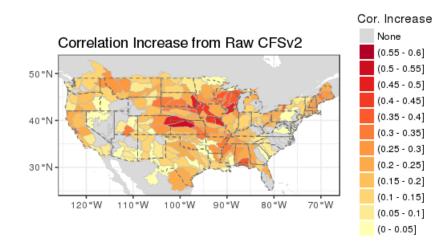
Surface Prate - Comp. 1

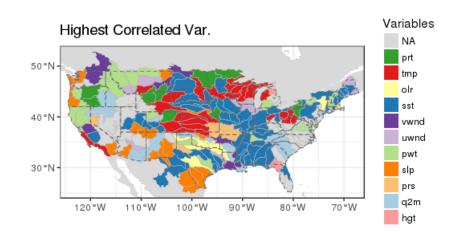

Sea Surface Temperature - Comp. 2



PLSR – July 2-3 week Precipitation Forecast

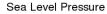

Leave One-Year Out Cross Validated Results – Best Predictor

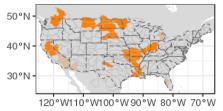




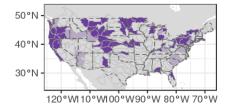
Correlation

Correlation

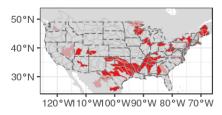

PLSR – July 2-3 week Precipitation Forecast


Leave One-Year Out Cross Validated Results – Top 3 Predictors

500 mb Geopotential height



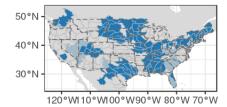
120°W110°W100°W90°W 80°W 70°W



Meridional Winds (850 mb)

Surface Temperature 2m

Specific Humid 2m



Precipitable Water

120°W10°W100°W90°W 80°W 70°W

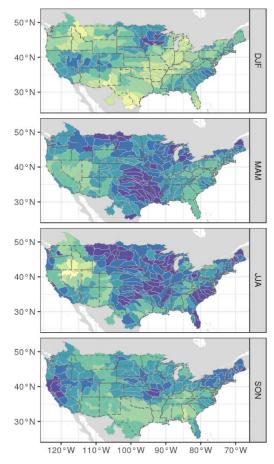
Sea Surface Temperature

Surface Prate

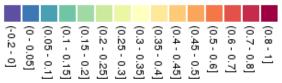
Surface Pressure

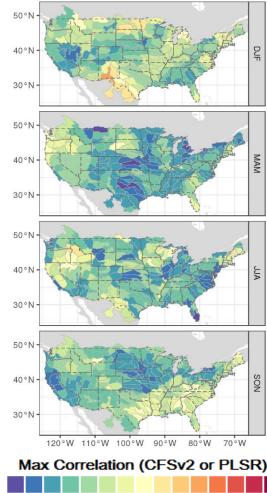
120°W110°W100°W90°W 80°W 70°W

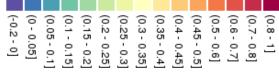
Zonal Winds (850 mb)

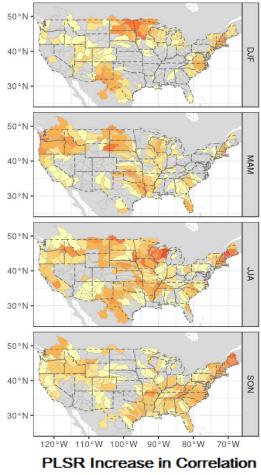


Outgoing Longwave Radiation




PLSR – Wk 3-4 Precipitation Forecast


Leave One-Year Out Cross Validated Results - Predictors: SST, precipitation



Raw CFSv2 Correlation

(0.05 - 0.1] (0 - 0.05]	0 '	(0.25 - 0.3] (0.2 - 0.25]	(0.4 - 0.5] (0.3 - 0.4]	None (0.7 - 0.9] (0.5 - 0.7]

Future Directions

- Train post-processing approaches to enhance skill of raw real-time S2S forecasts, where possible
- Advocate for *weeks 2-3* (or day 10-20) lead time as high potential products
- Interact with operational water management offices in Reclamation and US Army Corps to gauge interest in products and solicit feedback

Questions?

http://hydro.rap.ucar.edu/s2s/