Subseasonal prediction of wintertime East Asian temperature based on atmospheric teleconnections

Changhyun Yoo

Ewha Womans University

In collaboration with Nat Johnson (GFDL), Shing Chang, Steven Feldstein (PSU), Young-Ha Kim

will appear in JCLI.

Motivation

- Weekly probabilistic forecast of the wintertime North American
 T2m out to 6 weeks based on the MJO, ENSO, and linear trend.
- The **phase** information is the key to capture changes in the **Gaussian distribution** of the extratropical T2m response.

Johnson et al., *Weather and Forecasting*, 2014 NOAA CPC Week 3-4 Outlooks

Why the atmospheric teleconnection patterns?

- Low-frequency variability of the atmosphere can be predominantly described by recurrent and persistent teleconnection patterns.
 - With strong tropical convection, teleconnections can persist longer than 2 weeks (Dai et al. 2017).
 - The surface temperature anomalies may last longer than the circulation anomalies do.
- East Asia may *not be geographically suited* to benefit from the impact of the ENSO or MJO.
 - The poleward propagating Rossby waves, excited by ENSO or MJO, propagate downstream to North America.

Wintertime T2m hindcast of GloSea5

simulated by KMA

DJF HSS (GloSea5)

Domain averaged HSS values

NH teleconnection patterns

- North Atlantic Oscillation (NAO)
- East Atlantic (EA)
- East Atlantic/Western Russia (EAWR)
- Scandinavia (SCAND)
- Polar/Eurasia (PE)
- West Pacific (WP)
- East Pacific-North Pacific (EP-NP)
- Pacific/North American (PNA)
- Tropical/Northern Hemisphere (TNH)*
- Pacific Transition (PT)

Rotated Principal Component Analysis on Z500 over 20N-90N (Barnston and Livezey MWR 1987)

Composites of DJF T2m anomalies

by 0.5 stddev

Phase model construction

- The 7-day running averaged T2m anomaly
 - 1 week (day 4 10)
 - 2 week (day 11 17)
- Terciles at each grid point for each calendar day
 - T2m distribution centered at the chosen day with 21-d window
- Gaussian distribution
 - for a climate mode, its phases, and chosen lags,
 - compute mean and stddev.
- Validation
 - Cross-year-out validation

Statistical model prediction based on EAWR

Dots: the statistical significance at the 95th percentile using Monte Carlo resampling by reshuffling individual seasons

DJF HSS (EAWR)

Active phases only

Enhanced skillsNonlinear relations

Domain averaged HSS for EAWR

Including the linear trend

Predictions for lead time of 1 week

DJF HSS (Lag +1 wk)

Including the linear trend

Calibration func.

Each star contains 10% of the forecasts.

<u>Summary</u>

- Seven NH atmospheric teleconnection patterns are employed for wintertime subseasonal prediction of SAT.
 - For East Asia, the EAWR, SCAND, and PE patterns, which are positioned upstream of the region, make a substantial contribution.
 - Our approach using atmospheric teleconnections has implications for other regions of the globe.
- The statistical model generates forecasts that show comparable skill with that of dynamical model at a lead time of 3-4 wks and longer.

Thank you

The results of Johnson et al.

Heidke Skill Score (HSS)

$$HSS = \frac{(H - E)}{(T - E)} \times 100$$

- H: the number of categories forecast correctly
- E: the expected number of categories forecast correctly just by chance
- T: the total number of forecasts
- HSS = -50 : completely wrong set of forecasts
- HSS = 100 : perfect set of forecasts
- HSS = 0 : the expected HSS for a randomly generated forecast