

<u>Regime-dependent predictability and forecast error</u>

spectra of initialized forecasts

Subseasonal predictability: A phase-space perspective

International conferences on Subseasonal to Decadal prediction, Sep 17-21, 2018

Judith Berner

National Center for Atmospheric Research

Acknowledgements

Thanks to Laura Ferranti, Susanna Corti, Yaga Richter, Hannah Christensen

Regimes in climate

- E.g. Vautard 1990, Kimoto and Ghil, 1993; Corti et al. 1999
- Identification of regimes and preferred transitions
- Climate statistic perspective, often expressed as transition matrix

Flow-Dependent Verification of the ECMWF Ensemble over the Euro-Atlantic Sector

Figure 3. Anomaly correlation of the ensemble means over Europe $(12.5^{\circ}W-42.5^{\circ}E, 35.0^{\circ}N-75.0^{\circ}N)$ for the four forecast categories as a function of forecast range. Red refers the BL regime, blue to the NAO+, green to the NAO- and violet to the AR regime. The bars, based on 1000 subsamples generated with the bootstrap method, indicate the 95% confidence intervals.

Ferranti et al.2015

- Extended predictability of states that project at initial time on NAO-
- Initialized forecasts

Experiment Setup

- Potential predictability in daily output of CESM1.1 (Large ensemble)
- **7** 400 years
- Not initialized!
- Perfect Model Scenario
- Project onto EOF phase space

- **Z500** anomalies
- Extended Winter Oct-Mar
- NAO region 20:80°N, 90°W:40°E
- PNA region 20:85°N, 120°E:120°W

Pacific North American Pattern

PNA+

- Ridge over Western North America and trough over Easters North America
- Cold and wet in the South East

PNA-

- Ridge over Western North America and trough over Eastern North America
- Cold and moist in the west
- Warm and dry in the South East

Composites

Evolution of states in EOF state space

Skill from Mean

Predictive skill comes from the difference of the ensemble mean forecast to the climatological mean

Evolution of cluster means

- Potential predictability from mean of EOF1 out to 15 days
- Potential predictability from mean of EOF3 out to 30 days
- Preferred regime transitions lead to deviations from climatology (e.g. with max at day 7 in EOF2)

Skill from spread

Climatological

distribution q

Forecast

Distribution p

Х

Predictive skill comes from the difference of the ensemble mean forecast to the climatological mean Predictive skill comes from difference of the forecast variance with the climatological variance

Evolution of cluster variance

- Potential predictability from variance of EOF1 out to 6 days for PNA+ (8 for PNA-);
- Potential predictability from variance of EOF2/EOF3 out to 12 days for PNA-
- Preferred regime transitions lead to decrease in variance of EOF2/EOF3 for the first few days

Evolution of cluster variance

- Potential predictability from variance of EOF1 out to 6 days for PNA+ (8 for PNA-);
- Potential predictability from variance of EOF2/EOF3 out to 12 days for PNA-
- Preferred regime transitions lead to decrease in variance of EOF2/EOF3 for the first few days

=> Relative entropy

Relative entropy R (Kullback Leibler distance)

$$R = \sum_{i} p_{i} \ln\left(\frac{p_{i}}{q_{i}}\right),$$

- Climatological distribution q, Forecast distribution p
- As for long lead times approaches R->0
- E.g. Kleeman 2002

$$\mathbf{R} = \frac{1}{2} \left[\ln \left(\frac{\sigma_q^2}{\sigma_p^2} \right) + \frac{\sigma_p^2}{\sigma_q^2} + \frac{(\mu^p)^2}{\sigma_q^2} - 1 \right],$$

• Assuming 1D Gaussians

Evolution of cluster mean

Evolution of cluster variance

Nonlinear phase-space dynamics

Evolution of cluster means

Anomaly correlation in perfect model scenario

$$ACC = \frac{\sum_{i=1}^{n} (v_i - \bar{v}) (o_i - \bar{o})}{\sqrt{\sum_{i=1}^{n} (v_i - \bar{v})^2 \sum_{i=1}^{n} (o_i - \bar{o})^2}}$$

- ACC= Correlations between forecast and verifying observations
- Here: analogues

 (excluding >+/-2d
 from initialization)
 are used as verifying
 observations
- Conservative estimate

- Extended potential predictability for states initialized in +/- phases of NAO and PNA by 2-3 days
- Preferred regimes transitions in daily data
 - Not just statistical concept, but reflected as skill of initialized forecasts
 - More than persistence!!

Future work

- Better phase space (optimal persistence pattern?)
- Sensitivity to resolution
- Other teleconnections, e.g. El Nino, MJO

NAO and PNA in CESM

Berner, Sardeshmukh, Christensen, "On the dynamical mechnisms governing ENSO Irregularity" Thursday P-C3-02

Berner et al., J. Clim. 2018

EOFs

