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Craftsmanship and accumulated knowledge  
in model tuning and system design 

Scientific basis for modelling and ensemble techniques 



Outline	

Introduction
Challenges in S2S forecast system design 

n  S2S Phase 2 ensemble sub-project!
n  Ensemble size issue !
n  Forecast configurations (burst/LAF)!
n  Ensemble generation for Tropics & ocean!

Challenges in S2S prediction modelling 
l  Initial shocks/drifts and system design!
l  MJO-teleconnection example!

Summary 
3 / 30!



Introduction: Dynamical system for S2S prediction	

Initial condition uncertainty
Singular Vector, Bred Vector, Lagged Average Forecasting, Ensemble Transform,!
Ensemble Kalman Filter, etc. 

Model uncertainty
Uncertainty of physics processes: multi-physics, multi-model!
Uncertainty in time evolution: stochastic physics  

Source:!
Slingo and Palmer (2011) 
Phil. Trans. Roy. Soc. A	

Atmosphere-ocean coupled 
dynamical system !
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Introduction: Operational forecast systems	

Requirements!
•  Forecast quality!
•  Timeliness!
•  Cost-efficiency!

Limitations!
•  HPC resources!
•  HPC schedule!
•  Personpower!

JMA operational suite 
schedule  !
(As of June 2018, after 
HPC replacement) !

12UTC 00UTC 

Global Ensemble 
Prediction System!
(subseasonal 
forecast system) 
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Challenges in S2S forecast system design 	

Any architectural masterpieces!
have careful structure design,!
otherwise they do not stand. 
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S2S Phase 2 ensemble sub-project (science questions)	

l  Optimal initial-perturbation strategies for the sub-
seasonal timescale (ens. size, burst/LAF, etc.)!

l  Ocean and coupled initial perturbations for potential 
skill improvements in certain regimes (e.g. MJO, 
tropical cyclone)!

l  Over-confident predictions due to the discrepancy 
between the observed and forecast spread resulting 
from both random and systematic errors

l  Understanding and representing model uncertainty 
(e.g., stochastic physics) for the sub-seasonal 
timescale!

l  Forecasting the uncertainty in flow-dependent/non-
stationary subseasonal forecasts, spread-skill 
measure. (c.f. Rodwell et al. 2018 BAMS) 

l  Optimal initial-perturbation strategies for the sub-
seasonal timescale (ens. size, burst/LAF, etc.)!

l  Ocean and coupled initial perturbations for potential 
skill improvements in certain regimes (e.g. MJO, 
tropical cyclone)!

l  Over-confident predictions due to the discrepancy 
between the observed and forecast spread resulting 
from both random and systematic errors

l  Understanding and representing model uncertainty 
(e.g., stochastic physics) for the sub-seasonal 
timescale!

l  Forecasting the uncertainty in flow-dependent/non-
stationary subseasonal forecasts, spread-skill 
measure. (c.f. Rodwell et al. 2018 BAMS) 
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S2S Phase 2 ensemble sub-project (topics)	

1.  Study the influence of forecast configuration 
strategies, including initialization strategies used in 
the current generation of S2S prediction systems 
(burst and lagged ensemble) on the forecast spread.!

2.  Benchmark the spread-error relationship in the 
current generation of S2S prediction systems.!

3.  Explore the impacts of coupled initial perturbations on 
the sub-seasonal prediction, and develop 
techniques of coupled initial perturbations. !

4.  Investigate the impact of stochastic 
parameterizations for the sub-seasonal prediction. 
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Idealized Monte Carlo experiment	

Takaya in prep. S2S book!
c.f. Kumar et al. (2009) 

Objectives !
To investigate the ensemble size effects on !
ensemble mean predictive skills and !
uncertainty range of the skill assessment.!
!

Method
10,000 sets of Monte Carlo simulations with 50 independent 
samples (cases) were made. The samples were generated 
by the Box-Muller’s method. The skill dependency on 
ensemble size was analyzed.!
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Ensemble size issue 	

Larger ensemble size, higher 
scores!
!

Larger score gain in modest 
forecast skill. !
!

Score gain getting saturated in 
large ensemble size (M>40)!
!
Larger ensemble size, more 
robust estimate of statistics!
!

The whiskers indicate the intervals of 1 𝜎.	.	

cf.  Kumar (2009)!
      Murphy (1988) 
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Forecast configurations (burst/LAF)	

Burst ensemble:
All ensemble start from the!
same initial time!

LAF ensemble:
LAF approach divides whole !
ensemble into chunks with!
different initial time 

Advantages
Less computational costs at the same time, updated forecasts available 

Disadvantages
Lower skills due to skill degradation with a longer lead time!

11 / 30!



LAF ensemble effects in idealized experiment	

20 members 
(Group A) 

+
20 members

(Group B)

? members
 

We could improve this results with a post-process for multi-leadtime. (e.g., Dabernig et al. 2016 MWR)  

The LAF effects are sensitive to the forecast skill. 
For subseasonal forecasts, it is not so efficient as the seasonal prediction.
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LAF ensemble effects (subseasonal forecast case) (1/2)	

How efficient are different ensemble size and LAF settings? 

Number of Lag ensemble  
(Lagged ensemble lead time) 
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LAF ensemble effects (subseasonal forecast case) (2/2)	

The LAF ensemble approach improves subseasonal forecast skills, but 
its optimal LAF period is much shorter than that for seasonal forecasts 
(Chen et al. 2013). Efficiency of the LAF approach is difficult to assess 
using currently available hindcast data.!

Optimal lagged ensemble time (OLET) was defined as a LET which gives the best 
ACC. !

* ACC gain was defined difference between OLET ACC and 0-lag 1-member ACC.!
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Over-confident characteristics of MJO prediction 

Source: Vitart (2017) 

What are problems?  !
Ensemble techniques, models, or simply too large forecast errors? 
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Ensemble generation for Tropics, ocean	

Challenge: Ensemble generation for MJO, ISO, A-O coupled 
variabilities 

Source: Chikamoto et al. (2007)	
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Ensemble generation for Tropics, ocean	

V1103(ACC)	 V1103- V0803(ACC)	 V1103- V0803(RMSE)	

V1103:  EPS w/ tropic BGM!
V0803: EPS w/o tropic BGM	

0 1.2	-1.2	 -0.6	 0.6	 0 6	-6	 -3	 3	

Ｘ106 m2 s-1	

1.0	0.5	0	-0.5	-1.0	
C.I. :0,0.1,0.2,0.3,0.5,0.8,0.9	

Averaged over 10N-10S	

Miyaoka and Takaya（2011）MSJ meeting 
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Tropical initial perturbations do matter in S2S predictive skills!
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Perturbation evolution of subsurface temperature	

Initial	month	

1st	month	

2nd		month	

Atmoshperic 
perturbed forcing!

(Tropic bred vector)	

Ocean model!

JMA ensemble generation  
for seasonal predicition 

Perturbations!
18 / 30!



Ensemble generation for Tropics, ocean	

Coupled ensemble generation 

Work in progress at MRI/JMA	

Source: Hudson et al. 2013	
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Challenges in S2S prediction modelling 	

Seamless (unified) model development!
!

Subseasonal prediction modelling is!
 “buttering one's bread on both sides”?!

!

The S2S prediction requires models having more accurate 
predictive skill from week to subseasonal time ranges as 

well as smaller model biases. 
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Initialization shocks/drifts and system design	

Ocean initialization shocks and model drifts appear in a short time scale. 

Biases of temperature and velocity at 1-m depth 

Courtesy T. Komori@CPD/JMA 

Biases against MOVE-G2 ocean  
analysis forced by JRA-55 fluxes
during 5 June 2016-5 June 2017.

Model driftInitialization shock
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Initialization shocks/drifts and system design	

Mulholland et al. (2015) 

Causes of Initialization shocks
(1) An imbalance of surface fluxes due to insufficient 
communication between the model components in the 
initial condition calculation!
!
(2) The use of different models, different versions, or 
different configurations of the forecast model!
!
(3) Removal of bias correction terms in the model 
components in the beginning of the forecast!

Possible solution: coupled data assimilation 
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Initialization shocks/drifts and system design	

Z500	bias	（Trop） against	JRA55	 Z500	RMSE	（Trop） against	JRA55	

Precip	bias	against	TRMM	Multi-satellite	Precipitaion	Analysis	

Spin-up due to lack of initialization of cloud/convection properties 

Day	1	 Day	3	 Day	5	

day day 

[mm/day] 
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Initialization shocks in ocean model	

Day	1		

Day	5	

1000-hPa wind bias	T and current bias（1-m depth）	

0.02 0.1 0.4-0.4 -0.1 -0.02 0.6 1 1.8 1.4 2.2 2.6 
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Challenge of modeling, analysis and observations	



Sea ice initialization	

Initial: 2018.07.19, week1 Initial: 2018.07.18, week1 
Arctic SST & Sea Ice Concentration (ensemble mean) 

Source: S2S museum,  Courtesy Dr. Mio Matsueda 

This result highlights the challenge of the sea ice 
initialization (modeling, analysis, observations). 

There are similar challenges in other components 
(e.g., land, ocean).
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Model drift: MJO-teleconnection example!

Why model biases matter? 

Source: Vitart (2017) QJRMS 

MJO teleconnection pattern (Phase 3) 
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Model drift: MJO-teleconnection example!

MJO related teleconnection 
errors are caused by !
(1) MJO errors: !
phase, amplitude, tropical 
forcing (Rossby wave source) !
Hoskins and Karoly 1981,  Yasui and 
Watanabe 2010!
!

(2) Mean state errors of 
circulations : wave guide, 
Rossby wave propagation!
Hoskins and Ambrizzi 1993, Ting and 
Sardeshmukh 1993 

Source: Vitart (2017) QJ 

cf. Henderson et al. 2017 J. Clim. 

27 / 30!



Model drift: MJO-teleconnection example!

Source: Henderson et al. 2017 J. Clim. 28 / 30!



Model drift: MJO-teleconnection example!

Source: Henderson et al. 2017 J. Clim. 29 / 30!

MJO teleconnection errors arise from errors of 
basic states and Rossby wave forcing.



Summary	

•  Ensemble strategies have great impacts on S2S 
predictive performance. !

•  LAF ensemble adds skills, but its efficacy is not 
high compared with that for the seasonal prediction.!

•  Ensemble strategies for coupled models and 
Tropics need to be further studied.!

•  Initialization of coupled models (sea ice, land, etc.)!
•  S2S predictions suffer from initial shocks and model 

drifts, reducing these errors is an outstanding 
modelling challenge for S2S prediction.!
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