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art

Craftsmanship and accumulated knowledge
in model tuning and system design

sclence

Scientific basis for modelling and ensemble techniques



Introduction

Challenges in S2S forecast system design

= 525 Phase 2 ensemble sub-project

« Ensemble size issue

= Forecast configurations (burst/LAF)

= Ensemble generation for Tropics & ocean
Challenges in S2S prediction modelling

e Initial shocks/drifts and system design

e MJO-teleconnection example

Summary
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Introduction: Dynamical system for S2S prediction

- D . e
-
At

time
- L)
rd \\

forecast uncertainty / N
\
]
]
/

uncertainty ;]

initial condition
uncertainty

(] /
] /
i current U4
Atmosphere-ocean coupled {  climatology " Source:
: \ ’ )
dynamical system el _-»" Slingo and Palmer (2011)

"""" Phil. Trans. Roy. Soc. A

Initial condition uncertainty
Singular Vector, Bred Vector, Lagged Average Forecasting, Ensemble Transform,

Ensemble Kalman Filter, etc.

Model uncertainty
Uncertainty of physics processes: multi-physics, multi-model

Uncertainty in time evolution: stochastic physics
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Introduction: Operational forecast systems

Requirements Limitations

» Forecast quality « HPC resources
« Timeliness « HPC schedule
« Cost-efficiency « Personpower

Global Ensemble

b “ﬂ ik Prediction System
L ‘ (subseasonal
2 forecast system)

o JMA operational suite

o e M| | | schedule
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Challenges in S2S forecast system design

Any architectural masterpieces
have careful structure design,
otherwise they do not stand.

pedia

™~  Source: wiki



S2S Phase 2 ensemble sub-project (science questions)

e Optimal initial-perturbation strategies for the sub-
seasonal timescale (ens. size, burst/LAF, etc.)

e Ocean and coupled initial perturbations for potential
skill improvements in certain regimes (e.g. MJO,
tropical cyclone)

e Over-confident predictions due to the discrepancy
between the observed and forecast spread resulting
from both random and systematic errors

e Understanding and representing model uncertainty
(e.q., stochastic physics) for the sub-seasonal
timescale

e Forecasting the uncertainty in flow-dependent/non-
stationary subseasonal forecasts, spread-skill
measure. (c.f. Rodwell et al. 2018 BAMS)
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1.

S2S Phase 2 ensemble sub-project (topics)

Study the influence of forecast configuration
strategies, including initialization strategies used in
the current generation of S2S prediction systems
(burst and lagged ensemble) on the forecast spread.

Benchmark the spread-error relationship in the
current generation of S2S prediction systems.

Explore the impacts of coupled initial perturbations on
the sub-seasonal prediction, and develop
techniques of coupled initial perturbations.

Investigate the impact of stochastic
parameterizations for the sub-seasonal prediction.
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|dealized Monte Carlo experiment

. . 90
Objectives . %
To investigate the ensemble size effects on e
ensemble mean predictive skills and 2
uncertainty range of the skill assessment.

Method

10,000 sets of Monte Carlo simulations with 50 independent
samples (cases) were made. The samples were generated
by the Box-Muller's method. The skill dependency on
ensemble size was analyzed.

Takaya in prep. S2S book
c.f. Kumar et al. (2009)
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Ensemble size Issue

Correlations of ensemble means
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Forecast configurations (burst/LAF)

Burst ensemble: o
All ensemble start from the Burst

same initial time g cnsemble
3
LAF ensemble: L agged
LAF approach divides whole 3 Average
. : 3 Forecasting
ensemble into chunks with > (LAF)
different initial time : .

Initial time  Forecast time

Advantages
Less computational costs at the same time, updated forecasts available

Disadvantages
Lower skills due to skill degradation with a longer lead time
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LAF ensemble effects in idealized experiment
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The LAF effects are sensitive to the forecast skill.
For subseasonal forecasts, it is not so efficient as the seasonal prediction.

We could improve this results with a post-process for multi-leadtime. (e.g., Dabernig et al. 2016 MWR)
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LAF ensemble effects (subseasonal forecast case) (1/2)

How efficient are different ensemble size and LAF settings?
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LAF ensemble effects (subseasonal forecast case) (2/2)

i Land 2mT (W3-WA4) 850-hPa T (W3-W4) 500-hPa GPH (W3-W4)
Variables

60N-60N 30N-30S 60N-60N 30N-30S 60N-30N 30S-60S
ACC OLET ) 1 ) ) 1 )
(day)
Opt ACC 018(4)  0.19 (3) 022 (5  028(4) 0.5 (5) 0.19 (7)
(gain %%)

* ACC gain was defined difference between OLET ACC and 0-lag 1-member ACC.

Optimal lagged ensemble time (OLET) was defined as a LET which gives the best
ACC.

The LAF ensemble approach improves subseasonal forecast skills, but
its optimal LAF period is much shorter than that for seasonal forecasts

(Chen et al. 2013). Efficiency of the LAF approach is difficult to assess

using currently available hindcast data.
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Over-confident characteristics of MJO prediction
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Source: Vitart (2017)

What are problems?
Ensemble techniques, models, or simply too large forecast errors?
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Ensemble generation for Tropics, ocean

Challenge: Ensemble generation for MJO, 1SO, A-O coupled
variabilities 3.3% 0.33%

-2 -1 0 1 2

Figure 2. Snapshots of (a, b) 200-hPa and (c, d) 850-hPa velocity potential fields of tropical bred vectors on 26 November
2003. The left (right) plots show tropical bred vectors with rescaling factor of 3.3% (0.33%) of the climatological RMS
variance of the 200-hPa velocity potential. Amplitudes of these bred vectors are normalized. Positive (negative) values
indicate convergence (divergence). The contour intervals for the top (bottom) plots are 3 x 10° m*s™' (1 x 10° m*s™").

Source: Chikamoto et al. (2007)
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Ensemble generation for Tropics, ocean

V1103- VO803(ACC) V1103- VO803(RMSE)

V1103(ACC)
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Perturbation evolution of subsurface temperature

Spread TEQ AUGZO18(20180804 ens51)
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Ensemble generation for Tropics, ocean

Coupled ensemble generation

Ensemble member is
initialised using the rescaled
bred vector added to the

central analysis

Coupled model integrations Brod vectorns are

rescaled and centred

-

-,
.

-

.
Central unperturbed control Y

1 day

J

Central control is initialised using the
central analysis (PEODAS for the ocean
and AL for the atmosphere and land)

Source: Hudson et al. 2013
Work in progress at MRI/JMA
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Challenges in S2S prediction modelling

Seamless (unified) model development

Subseasonal prediction modelling is
“buttering one's bread on both sides™

The 525 prediction requires models having more accurate
predictive skill from week to subseasonal time ranges as
well as smaller model biases.
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Initialization shocks/drifts and system design

Ocean initialization shocks and model drifts appear in a short time scale.

Biases of temperature and velocity at 1-m depth
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Biases against MOVE-G2 ocean
analysis forced by JRA-55 fluxes
during 5 June 2016-5 June 2017.

Courtesy T. Komori@CPD/JMA
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Initialization shocks/drifts and system design

Causes of Initialization shocks

(1) An imbalance of surface fluxes due to insufficient
communication between the model components in the
Initial condition calculation

(2) The use of different models, different versions, or
different configurations of the forecast model

(3) Removal of bias correction terms in the model
components in the beginning of the forecast

Mulholland et al. (2015)

Possible solution: coupled data assimilation
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Initialization shocks/drifts and system design

Z500 bias (Trop) against JRASS 7500 RMSE (Trop) against JRAS5

24.0
5.0 1
22.0
0.0
20.0
-5.01 *,o/’"‘** 18.0 1 M/W
>— o
_10.0-\\\,_,4"// 16.01
14.0 1
—-15.0 1
12.0
—20.0
10.0
-25.0 8.01
-30.0 +—r—m ™ @—m—m——m—v+—"F"—"7""—"1—"1—"—"—"—""T"T——T———— 6.0
2345678910111213141516171819202122232425262728 = Fr—TTTTr—TTrTT T T """ T T—T—T——T——T—T——
day 234567 8910111213141516171819202122232425262728
day
Precip bias against TRMM Multi-satellite Precipitaion Analysis
50N . 50N T r 50N
40N 1= 40N T- 40N 1=
30N 30N 30N
20N 20N 20N
1oN] > 10N{ =2 1 N " s
EQ EQ EQ
108 108 . 108
208 208 208
308 308 308
408 - 408 408 "
508 —r— v r - ~r— 505 +2= . - , — — i 508 —r - r — ,
60E 120E 180 120W 60W 60E 120E 180 120W 60W 60E 120E 180 120W 60W
m——— g O E——— I -
-5 -45 -4 -3.5 -3 -1!.5 -I2 -1I.5 —I1 : 1!5 ; 25 3 35 4 45 5 -5 -45 -4 =35 -3 -;.5 -I2 -'!.5 -l'l 1 1!5 ; 25 3 35 4 45 5 -5 -45 -4 -3.5 -3 -;.5 -IZ -II.S -|1 : 1!5 ; 25 3 35 4 45 5
[mm/day]

Spin-up due to lack of initialization of cloud/convection properties
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Initialization shocks in ocean model

T and current bias (1-m depth) 1000-hPa wind bias
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Challenge of modeling, analysis and observations
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Sea ice initialization

Arctic SST & Sea Ice Concentration (ensemble mean)

Initial: 2018.07.18, week

Initial; 2018.07.19, week1

This result hlghllghts the challenge of the sea ice
initialization (modeling, analysis, observations).
There are similar challenges In other components

., land, ocean).

Source: S2S museum, Courtesy Dr. Mio Matsueda
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Model drift: MJO-teleconnection example

Why model biases matter?

MJQO teleconnection pattern (Phase 3)

BoM 0.15 CMA 0.14 HMCR 0.13 NCEP 0.32 ISAC 0.25

ECCC 0.21

Bl <-om Bl —40om--30 B -30m--20 B —20m--10 -10m -0

0-10 B 10-20 B 20-30 Il 30-40 Bl -som

Source: Vitart (2017) QJRMS
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Model drift: MJO-teleconnection example

MJO related teleconnection
errors are caused by

(1) MJO errors:

phase, amplitude, tropical
forcing (Rossby wave source)

Hoskins and Karoly 1981, Yasui and
Watanabe 2010

Correlation

(2) Mean state errors of
circulations : wave guide,
Rossby wave propagation

Hoskins and Ambrizzi 1993, Ting and
Sardeshmukh 1993

cf

(b)

MJO Bivariate Correlation 1999-2010 re-forecasts
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Source: Vitart (2017) QJ

. Henderson et al. 2017 J. Clim.
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Model drift: MJO-teleconnection example

ERA/GPCP  MJO phase 3 MRI-CGCM3 MJO phase 3
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Model drift: MJO-teleconnection example
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Ensemble strategies have great impacts on S2S
predictive performance.

LAF ensemble adds skills, but its efficacy is not
high compared with that for the seasonal prediction.

Ensemble strategies for coupled models anad
Tropics need to be further studied.

Initialization of coupled models (sea ice, land, etc.)

S2S predictions suffer from initial shocks and model
drifts, reducing these errors is an outstanding
modelling challenge for S2S prediction.
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