How important are ENSO and the MJO to tropical subseasonal predictability?

Matt Newman, Prashant Sardeshmukh, and Yan Wang

University of Colorado/CIRES and NOAA/ESRL/PSD

Use Linear Inverse Model (LIM) to make predictions and diagnose predictability

Empirically model the *evolution* of climate anomalies with the linear stochastically forced dynamical system

 $d\mathbf{x}/dt = \mathbf{L}\mathbf{x} + \mathbf{F}_s$

x(t): series of maps, **L**: stable operator, **F**_s : white noise (also maps) that could be linearly dependent on **x**-

- Linear model, not linearization of equations: characterize predictable dynamics in nonlinear system
- Multivariate, not univariate, nonnormal linear dynamics: anomalies can growth and evolve
- (Ensemble mean) forecasts for lead τ : $\mathbf{x}(t + \tau) = exp(\mathbf{L}\tau)\mathbf{x}(t)$; ensemble spread due to \mathbf{F}_s
- "Forecast the forecast skill": based on forecast signal-to-noise Low-order model (prefiltered in EOF space: <100% variance retained)
 Determine LIM from 0 and 1-lag covariance of x [C(1)C(0)⁻¹, as in AR1 model]
 Hindcasts: determined from ten-fold cross-validation, verification data not EOF filtered
 Simplifications: assume noise is independent of x, fixed L over analysis dataset

We will use LIM here to:

- 1) Benchmark forecast skill of numerical dynamical models
- 2) Diagnose important dynamical processes, especially coupling
- 3) Estimate predictability (that is, predictable variations of skill)

In LIM: maximum forecast signal leads to maximum forecast skill

F

$$\mathbf{L} = \text{constant}, \mathbf{F}_{s} = \text{additive} (\text{state-independent})$$

dv/dt = Iv

Expected forecast anomaly correlation

$$\rho_{\infty} = \frac{s}{\sqrt{1+s^2}}$$
, where $s^2 = \frac{\mathbf{G} \mathbf{G}(0) \mathbf{G}^{\mathrm{T}}]_{ii}}{[\mathbf{E}(\tau)]_{ii}}$

Larger signal related to "optimal" perturbation [leading singular vector of G(τ)]

Tropical "C-LIM"

"C-LIM": 5-day running mean tropical anomalies (1982-2011)

Ocean: SST/20°C isotherm depth

Atmosphere: OLR/200&850 mb wind

Low-order model (prefiltered in reduced EOF space) Determine LIM from 0 and 5-day lag covariance of **x** (as in AR1 model) Hindcasts: determined from cross-validation (10% data withheld)

Run at CPC as part of guidance used in Weeks 3/4 product

"C-LIM2.0"

- Use original C-LIM to *dynamically filter* coupled (interannual) space from anomalies
- Construct separate winter (NDJFMA) and summer (MJJASO) LIMs
 from residual anomalies
- Hindcasts/Forecasts are the sum of these two systems

LIM, CFS2, EC-2016 models have comparable OLR skill

RMS Skill score = 1 – standardized error

LIM, CFS2, EC-2016 models have (mostly) comparable U200 skill

RMS Skill score = 1 – standardized error

LIM predicts patterns of skill: some places are more predictable than others

OLR Days 16-20 hindcast skill

Average skill has spatial structure because so does average signal-to-noise variance

Skill is local anomaly correlation, all year

Maximum forecast signal comes from optimal amplification

OLR "optimal" amplification over 20 days

SST "optimal" amplification over 180 days

Hovmoller: equatorial (8S-8N) average

Contours: OLR Shading: SST Vectors: 850 hPa winds Z20, 200 hPa winds not shown

0

Skill is higher when initial conditions strongly project on optimal growth structure

Tropical OLR skill split into cases with either **high** or **low** initial projection on optimal growth pattern.

On average, LIM predicted skill is realized by hindcasts (when predicted skill > 0.4)

Skill measure: pattern correlation of Tropical IndoPacific OLR anomaly forecast with verification

LIM identifies more skillful forecast cases *a priori*

Go further: how does air-sea coupling impact forecasts?

Two distinct eigenmode spaces in **L**

<u>"coupled" (blue)</u> Longer eft, low frequency modes strongly modified by coupling within L

<u>"internal atmospheric" (red)</u> Short eft, high frequency modes largely only slightly modified by coupling within L

MJO eigenmode is shaded

Newman, Sardeshmukh, Penland 2009

Optimal structure for 20-day OLR anomaly growth, decomposed into coupled and internal spaces

total

Shading: SST Contours: OLR Vectors: 200 mb winds Most LIM skill due to coupled space initial conditions for leads greater than about 3 weeks

Pattern correlation of tropical IndoPacific OLR LIM hindcasts, 1982-2009, where forecast initial conditions are either:

Full Coupled space only Internal space only

Summary

- LIM is useful for climate diagnosis and forecast uncertainty quantification **because** its forecast skill is comparable with coupled GCMs
 - Provides key -- and still relevant -- benchmark for GCM skill
 - Diagnostics of dynamics and predictability: where do models go wrong
- In the Tropics, there are two *nonorthogonal* linear dynamical systems:
 - Slow (~interannual) coupled space: more predictable, ENSO in this space
 - Fast (~intraseasonal) internal atmosphere space: less predictable, but MJO in this space
 - Most S2S skill comes from slow space, even at relatively short (<1 month) leads
 - Maximum anomaly growth is due to destructive → constructive interference between these space
- Subseasonal-interannual tropical forecast skill may be *predicted* based on LIM signal-to-noise
 - S2S skill is low on average but forecasts of opportunity can (and must) be identified *a priori*
 - Similar results for extratropical SLP anomalies; see John Albers Poster P-A1-03 today

Using the LIM to "filter" the data

