

Stratospheric influences on European month-ahead wind power generation and its predictability on subseasonal time scales

Dominik Büeler^{1,2} / Remo Beerli^{3,2}, Heini Wernli², Christian M. Grams^{1,2}

Institute of Meteorology and Climate Research, Department Troposphere Research, KIT, Germany
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
AXPO Trading AG, Switzerland

EnergyWay

Motivation | Polar vortex – weather regimes – wind power

State of the stratospheric polar vortex (PV) as a direct source of subseasonal predictability for European energy industry?

Motivation | Research questions

1. How does the **strength of the stratospheric polar vortex** affect **month-ahead wind power generation** in different European countries?

→ Work from my colleague Remo Beerli (Beerli et al., 2017, QJRMS, <u>https://doi.org/10.1002/qj.3158</u>)

2. How does this effect from the stratospheric polar vortex **influence the skill of subseasonal numerical weather models** in predicting energy-industry-relevant **surface wind, temperature, and precipitation** in different European countries?

 \rightarrow My work

Data | 1st research question

- Strength of stratospheric polar vortex:
 - Geopotential height anomalies from ERA-Interim reanalysis
 - Definition = (ΔZ @ 150hPa)_{60°-90°N}
 - **Daily**, 1985 2014, DJF

Wind power generation:

- European country-aggregated hourly wind power generation dataset "Renewables.ninja" (Staffel & Pfenninger, 2016, ENE / <u>www.renewables.ninja</u>)
- Principle: Installed wind turbines of 2014 + wind from MERRA reanalysis dataset => "wind power generation reanalysis"
- **Daily month-ahead average**, 1985 2014, DJF

Beerli et al., 2017, QJRMS

6

Results | Tropospheric pattern after anomalous polar vortex

Institute of Meteorology and Climate Research (IMK-TRO)

Results | Simple 3-categorical statistical forecast

Beerli et al., 2017, QJRMS

Conclusions | Part I

Skill of simple statistical forecast shows that phases of anomalous stratospheric polar vortex strength are windows of enhanced predictability for sub-seasonal wind power generation, but only for certain regions

■ How does this mechanism influence skill of subseasonal numerical weather models? → 2nd research question

Data | 2nd research question

Subseasonal ECMWF model (S2S prediction project database):

- 2 reforecasts / week with lead time 46 d
- 1995 2015 (20 years), DJF
- Total: 994 reforecasts
- **11 ensemble members** (1 control, 10 perturbed forecasts)

Used fields (both from the model and ERA-Interim for verification):

Strength of stratospheric polar vortex = (ΔZ @ 100hPa)_{60°-90°N}
Daily

- Surface wind = (ΔUV @ 10m)_{European Countries}
- Surface temperature = $(\Delta T @ 2m)_{\text{European Countries}}$
- Precipitation = $(\Delta TOT_PREC)_{European Countries}$
 - Daily month-ahead average

Results | Statistical vs. model forecast (10m wind)

Conclusions | Part II

Increase of S2S model skill through anomalous strength of stratospheric polar vortex depends on variable and European region

- Reason: anomaly patterns following anomalous polar vortex events have different spatial characteristics for different surface variables
 - → a country is particularly influenced if located in regions of strong anomalies

Implication for energy meteorologists: considering strength of stratospheric polar vortex and knowing about its representation in S2S models is beneficial

Implication for modeling community: proper representation of stratosphere-troposphere coupling in S2S models is important