Climate Change in the Sahel: the past and the future

Michela Biasutti

Image: NASA
Climate Change in the Sahel:

The past

How did the climate of the Sahel vary over the last century?
What were the proximate causes of droughts and pluvials of the 20th century?
What was the ultimate cause: natural variability or anthropogenic forcing?

The future

What are the projections of Sahelian climate?

The response

How can we make progress?
Observed Sahel Surface Temperature Anomalies

What happened? How has the climate of the Sahel varied over 1900-2020?

Berkeley Earth Surface Temperature

SAHEL

GLOBAL LAND
Observed changes in extreme rainfall

Frequency of extreme Sahelian storms (as indicated by very cold cloud tops) tripled since 1982 in satellite observations.

Extreme events now account for 25% of total rainfall.

Taylor et al. 2017
What happened? How has the climate of the Sahel varied over 1900-2020?

What can explain the multi-decadal swings?
The decadal swings in Sahel rainfall are well matched by the CMIP6-generation of AGCMs

OBSERVED SAHEL RAINFALL

Herman, Biasutti, Kushnir, 2023, Climate Dynamics.

What happened? Proximate causes of rainfall swings.
The role of SST alone?
Rainfall swings are determined by the **global ocean**

[Diagram: Observations of Sahel rainfall anomalies (mm/day) with SST and radiative forcing compared to with SST only.]

What happened? Proximate causes of rainfall swings.
The direct effect of radiative forcing (fast response)

The difference (direct response) is small, but indicates
- Effect of volcanic eruptions and
- Extra wetting in recent decades (as GHG ↑ and Aerosols ↓).

What happened? Proximate causes of rainfall swings.
The effect of 20 years of model development

PAST AMIP performance:

2003: Giannini et al.: “The ratio of observed to ensemble-mean standard deviations in the Sahel is 4”
2008: Scaife et al (C20C)
2015: Rodriguez-Fonseca et al

Timing and (most of the) magnitude of Sahel rainfall anomalies are captured, if the SST is prescribed
We use Coupled GCMs to determine the ultimate cause of observed SST & rainfall changes.

COUPLED ATMOSPHERE-OCEAN GCMs:

Impose the history of external forcings (atmospheric pollution, solar output and volcanic eruptions) and simulate the response of the entire climate system (atmosphere and ocean).
The full extent of drought is not captured in CMIP

- The signal has the right sign
- The signal + internal variability is too small

Is this a problem with SST?
We use a simple index to summarize teleconnection of Sahel rainfall with global SST.

North Atlantic Relative SST Index

NARI means to capture the stabilizing effect of warming tropical SST and the destabilizing effect of local moisture influx.

CMIP models get the wrong SST, hence the wrong Sahel

OBS, CMIP5 and CMIP6 Sahel rainfall

OBS NARI
CMIP6 NARI
CMIP5 NARI

CMIP6 UN-Correlated with OBS
CMIP5 Correlated at 0.4 with OBS
Why is **CMIP6** worse than **CMIP5**?

• extra wetting from the direct radiative forcing further degrades the CMIP6 simulations
• CMIP5 and CMIP6 have different sensitivities.
• CMIP5 and CMIP6 don’t have the same forcing!

CMIP5 and CMIP6

Sahel rainfall residual (variability not related to NARI) and *Fast Response*
He et al: **CMIP6 produces a spurious gradient**

GHG force an erroneous “trend” in inter-hemispheric gradient in CMIP6.

- Does this pattern of SST affect Sahel rainfall in addition to NARI?
- Is the direct effect confounded with SST?

https://www.nature.com/articles/s41586-023-06489-4

He et al: **CMIP6** underestimates the response to aerosols

He et al, 2023

DETREND (spurious gradient)
AND RESCALE
(Atlantic signal/noise)

He et al, 2023

What will happen?
Rainfall projections are complex

CMIP6 CHANGES IN SEASONAL TOTAL

- West and East have different anomalies

Figure 6: Changes in precipitation scaled by $\Delta T [\text{mm day}^{-1} \text{K}^{-1}]$ for the end of the 21st century and for the 6 scenarios (a) A+M+, (b) A-M-, (c) A+M- and (d) A-M+

Monerie et al 2024, JGR
Rainfall projections are uncertain

- The projections for the Western Sahel range from quite a bit drier to much wetter.

- The projections for the Central/Eastern Sahel range from no change to much wetter.

Figure 6: Changes in precipitation scaled by ΔT [mm day$^{-1}$ K$^{-1}$] for the end of the 21st century. Precipitation in JAS over 1960-1999 for the CMIP6 ensemble mean (historical simulations).

Figure 7: (a) Changes in central and western Sahel precipitation for each CMIP6 model (black) and ensemble mean (red). Anomalies are relative to the 1960-1999 period. (b) Western Sahel precipitation anomaly. (c) Central Sahel precipitation anomaly.

Monerie et al, 2023 JGR
SST pattern uncertainty causes rainfall uncertainty

Figure 6: Changes in precipitation scaled by $\Delta T \ [\text{mm day}^{-1} \text{K}^{-1}]$ for the end of the 21st century and for the (a) multimodel mean (SSP 5.8 minimal historical simulations) and the four scenarios (b) A+M+, (c) A-M-, (d) A+M, and (e) A-M+. The black boxes in Figure 5a show the areas that were used to define the western and central Sahel precipitation indices. Red contours indicate the climatological precipitation in JAS over 1960-1999 for the CMIP6 ensemble mean (historical simulations).

- CMIP6 models that simulate an especially warm North Atlantic and Mediterranean (or a more positive inter-hemispheric temperature gradient) tend to wet the Sahel.
- Models with a relative cooling of North Atlantic dry the Sahel.
SST pattern uncertainty causes rainfall uncertainty

The SST trends linearly related to the uncertainty in Sahel projections

- Atlantic vs. Global Tropics
- Inter-hemispheric gradient

This is a problematic pattern!
What have we learned about GCM simulations of Sahel rainfall?

1. Sahel rainfall is sensitive to the pattern of SST changes
2. Current AGCMs capture this sensitivity fairly accurately
3. But the CGCMs cannot capture the SST response to past forcings:
 * overestimated inter-hemispheric gradient
 * underestimated Atlantic SST changes
4. Uncertainty in how this same SST pattern will evolve drives uncertainty in Sahel rainfall.
What do we do now?
Adaptation

Climate Research

How can we make progress?
Adaptation

“If we can learn to substitute evolution-from-what-we-know for evolution-toward-what-we-wish-to-know, a number of vexing problems may vanish in the process.”

(Thomas Kuhn, via Ted Shepherd)

Focus on adaptations that address heat, downpours, and drought at the same time.

Adaptive decision making with monitoring, benchmarks, and decision points.
Climate Research

- "better" climate simulations
 - Can we reduce uncertainty in 20th century forcings?
 - Can we solve the signal-to-noise paradox?

- Observational constraints:
 - What is the range of natural variability in the Sahel?
 - What is the response to volcanic aerosols?
Climate Research

• "better" climate simulations

• Observational constraints:
 - What is the range of natural variability in the Sahel?
 - What is the response to volcanic aerosols?
What happened?
Changes in the global oceans caused 20th century pluvials and droughts, and the 21st century recovery. Volcanoes add to interannual variability. Attribution of rainfall changes to anthropogenic Aerosols and Greenhouse Gases in 20th century rainfall remains uncertain, but the balance of evidence suggests a larger forced response than simulated by CMIP models.

What will happen?
More warming and more intense rainfall
Drought will persist in the Western Sahel, the East will continue to wet… maybe!

What should we do?
Focus adaptation on solutions robust to uncertainty in the mean rainfall change
Better understand/model the gradient in SST response
Collect new data to build a paleo record of Sahel rainfall

MORE QUESTIONS: CONTACT ME VIA EMAIL: biasutti@ldeo.Columbia.edu