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CMIP: a More Continuous and Distributed Organization
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1. How does the Earth system
respond to forcing?

2. What are the origins and
consequences of systematic model
biases?

3. How can we assess future climate
change given climate variability,
climate predictability, and
uncertainties in scenarios?
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TOGA 95 conference: Melbourne 1995 B Uy

My first exposure to WCRP was as an undergraduate student during the Tropical Oceans
and Global Atmosphere (TOGA) conference held in Melbourne in 1995

TOGA was instrumental in establishing a observational network in the tropical oceans that
remains critical to our ability to understand and predict the El Nifio Southern Oscillation
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Systematic biases: El Nino Southern Oscillation MONASH
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ENSIP: The El Nifio Southern Oscillation simulation intercomparison project

NINO3 SST Standard Deviation (K)

Std deviation of Nind3 SST in 24 coupled models
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Observed standard deviations of
Nifo3 SSTs show a large annual
cycle, with a minimum in April
and maximum in December

Most models at this time did not
capture the phase locking of
ENSO variability to the annual
cycle



Systematic biases: El Nino Southern Oscillation L"j‘%@gﬁy

Some improvements in simulating the El Nino Southern Oscillation over the course of CMIP,
though many biases still remain

Std deviation of Nind3 SST in 24 coupled models
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Systematic biases: El Nino Southern Oscillation gy

Some improvements in simulating the El Nino Southern Oscillation over the course of CMIP,
though many biases still remain

Climatology of annual equatorial Pacific SSTs
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Systematic biases: SH mid-latitude jet,

Southern Annular Mode
(SAM ) index measures
pressure difference
between 40°S and 65°S
and strength & position
of Southern Ocean winds
in lower atmosphere
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Systematic biases: SH mid-latitude jet, storm tracks and annular mode ARM®AaE
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Systematic biases: SH mid-latitude jet and annular mode MONASH
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Still not a complete theoretical understanding of why the Jet Latitude vs Jet shift
jet shifts poleward in response to increasing CO, or ozone (d) DJF
. . . . 2 i r=-0.22 (-0.52,0.12)
depletion or why the jet position is biased equatorward oo 2! Am=-0.11 !
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How does the Earth system respond to forcings? ey,

Both ozone depletion and
iIncreasing GHGs increase
the meridional
temperature gradient,

| Increasing GHGs
M ameon => poleward shift in the jet
Ozone recovery
=> egqwd shift in the jet
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Dry subsidence
region

Westerlies South Pole

Perlwitz, 2011



How does the Earth system respond to forcings? MONASH
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CCMVal and CMIP showed the importance of incorporating time-varying ozone forcing for SH climate

s0. OCHH ¢ Incl O; recovery p No O;recovery
U \ . S— - 20.6
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In CMIP3, only half of the models included time-
varying ozone

In CMIP5, all models included time-varying ozone,

either prescribed, semi-offline or with interactive
chemistry

Son et al 2009; Eyring et al 2013; Son et al 2018; 2018 ozone assessment



How does the Earth system respond to forcings? ey,

CMIP has been critical for providing the experimental framework and historical forcings
for detection and attribution studies and statements in IPCC

Most of the observed warming over the last 50 years is /ikely to have been due to the increase in
greenhouse gas concentrations (IPCC 2001)

Most of the observed warming over the last 50 years is very likely to have been due to the increase
in greenhouse gas concentrations (IPCC, 2007)

It is extremely likely that human influence has been the dominant cause of the observed warming

since the mid-20t Centurv (IPCC. 2013)
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Assessing future change given climate variability

Annual mean temperature anomaly - Global (185u-cu 1y,

8 Australian Bureau of Meteorology

A recent focus has been to
understand and predict decadal
variability

Mean surface temperature anomaly (°C )

Many studies on understanding
the contribution of internal
variability to the slowdown in the
global temperature trend
between ~2000-2013

Equatorial mean trend

-0. . 0.
°C per decade

England et al 2014



Assessing future change given climate variability M ONASH

CMIP5 enabled forcing comparisons, assessment of internal
variability and decadal predictions to gain a better
understanding of the global temperature slowdown

Big hiatus Warming slowdown
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How does the Earth system respond to CO,?

An early phase of CMIP established the
1% per year increasing CO, experiment,
defining a standard way to diagnose and
understand the transient climate

response (TCR)

Equilibrium climate sensitivity estimates
today™* are similar to ranges estimated by
the Charney report in 1979

* |
stay tuned for CMIP6! IPCC (2013) TFE

Probability / Relative Frequency (°C™")
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Response to CO, — cloud feedbacks

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. D10, PAGES 16,601-16,615, SEPTEMBER 20, 1990

Cess et al 1990 found that most of the variation
in CI | mate sen S|t|V|ty was d ue to d |ffe rences |n Intercomparison and Interpretation of Climate Feedback Processes
in 19 Atmospheric General Circulation Models

R. D. Cgss,! G. L. PorTER,2 J. P. BLANCHET,? G. J. BOER,? A. D. DEL GENIO,*

M. DEQUE,’ V. DYmNikov,6 V. GALIN,® W. L. GaTEs,? S. J. GHAN,2 J. T. KIEHL,?
A. A. Lacis,* H. LE TreuTt,® Z.-X. L1,8 X.-Z. LIANG,® B. J. MCAVANEY, 0
V. P. MELESHKO,!! J. F. B. MITCHELL,? J.-J. MORCRETTE,!3

cloud feedback
D. A. RANDALL,!4 L. Rikus,!® E. ROECKNER,!S J. F. ROYER,’

U. ScHLESE,!S D. A. SHEININ,!! A. SLINGO,” A. P. SokoLov,!!
K. E. TAYLOR,2 W. M. WASHINGTON,? R. T. WETHERALD,!6
I. YAGAL'7 AND M.-H. ZHANG®

Cloud feedbacks remain the largest uncertainty

in total feedbacks today
“cloud feedback is the consequence of all
interacting physical and dynamical processes in a

|H

Aerosol Effects
general circulation mode

“climate research benefits from a diversity of
climate models. If only one model were available,
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IPCC 2001

(a) CO, emisslons

Anthropogenic CO; emissions (GtC/yr)
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shown grey, while various mitigation targets are shown in colour. Bold lines indicate the subset of scenarios chosen as a focus for
running CMIP6 climate model simulations. Chart produced for Carbon Brief by Glen Peters and Robbie Andrews from the Global
Carbon Project.
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Assessing future change given uncertainty in scenarios

Cumulative total anthropogenic CO, emissions from 1870 (GtCO5)
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Assessing future climate change - extremes

The availability of sub-monthly
output was limited in early CMIP
phases, making it difficult to
study extreme events

In CMIP3, ‘extremes indices’
enabled one of the first
multimodel assessments of
future changes in extremes

Focused on the robustness of the
change in terms of sign and
significance

std. dev.
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GOING TO THE EXTREMES
AN INTERCOMPARISON OF MODEL-SIMULATED HISTORICAL
AND FUTURE CHANGES IN EXTREME EVENTS

Preclpltation Intenslty
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Assessing future climate change - extremes Universiy

CMIP6 will provide many more
models with high frequency
output and large ensembles
and new MIPs to better enable
a process-based understanding
of extremes in the multimodel
context

Climatic drivers

Non-climatic
drivers

g \ imacs
Y
Climate Vulnerability Socioeconomic
processes
Natural Socioeconomic
variability pathways

- Risk
Adaptation and

Anthropogenic
climate change migration actions
Exposure Governance
K

Non-cllmatlc
drivers

IPCC, 2012; Zscheischler et al., 2018



Assessing future change — constraining projections
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Process-based emergent constraints — statistical relationships between current
climate and future change across the CMIP models — aim to reduce uncertainty
in future projections and in combination with observations could help to focus

model evaluation

Earth sy stom senstivity

Obsorvable trond or variation

Eyring et al 2019; Hall et al 2019
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modsling cemters (9)are 23 CMIP6-Endorsed MIPs ~ CMIP-°

committed to performing all T e Mok oyt o
of the MIP’s Tier 1
experiments and providing all CFMIP, DynVarMIP
the requested diagnostics GMMIP,
needed to answer at least PMIP pr— HighResMIP,
one of its science questions. Ciraalatien i
Paleo

phenomena

RFMIP, DAMIP, PG experiment; OMIP, FAFMIP/
. IMIP
VoIMIP  (haracterizing & Soa] tssr:;:& MIP,
forcing Land/ lce
AerChemMIP Chemistry/ impacts  ORDEX,
Aerosols =P VIACSAB
Carbon Scenarios
cyde
Camip ScenarioMIP
Decadal
Land
and use Gée- prediction
engineering Diagnostic MIPs
LUMIP DCPP

CDRMIP, GeoMIP

See Special Issue on the CMIP6 experimental design and orrganisation at htips://www.geosci-
model-dev.net/special_issue590.html for description of the CMIP6-Endorsed MIPs|
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CMIP has helped to advance our understanding of the Earth system and its
response to forcing since the 1990s. Thousands of scientific articles have been
written through analysis of its many petabytes of archived multimodel output

CMIP6 holds promise for more advances, with additional experiments and larger
amounts and types of output and MIPs designed by the scientific community to

focus on understanding processes, biases and feedbacks, centered around the
following questions:

1. How does the Earth system respond to forcing?
2. What are the origins and consequences of systematic model biases?

3. How can we assess future climate change given climate variability, climate
predictability, and uncertainties in scenarios?



TOGA 95 conference: Melbourne 1995 B e

My first exposure to WCRP was as an undergraduate student during the Tropical Oceans and
Global Atmosphere (TOGA) conference held in Melbourne in 1995

My supervisor snuck me in to meet with Kevin Trenberth during a coffee break to discuss my
thesis results which were evaluating SH storm tracks in the BMRC AMIP experiment

Let’s show our support to the students and ECRs who will shape the next 40 years of WCRP!

Trenberth, 1991, Storm tracks in the Southern Hemisphere, J Climate

STORM TRACK-MEAN JET-EDDY PERTURBATION
RELATIONSHIPS




