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Background and purpose of workshop 
 
Over the last few decades, the polar regions have exhibited some of the most striking changes in the 
observed climate record. Whilst the Arctic has warmed, as expected from the polar amplification of 
greenhouse-gas (GHG) induced warming arising from the ice-albedo feedback, the observed rate of 
summertime sea-ice retreat in the Arctic is at the upper limit of climate model predictions. At the same time, 
Antarctic sea-ice extent is observed to be increasing, contrary to the model predictions. The clearest 
observed changes in the Antarctic, which are associated with the poleward shift and intensification of the 
summertime midlatitude jet, are primarily attributed to the ozone hole, which implies that the observed 
trends will weaken substantially or could even reverse in the coming decades as the ozone hole recovers. 
However, natural variability in polar regions is large, with substantial power at multi-decadal timescales, and 
manifests itself in large-scale “modes” whose physical nature and causality are not clear. There are even 
suggestions of an inter-hemispheric “see-saw”. As a result, it is difficult to determine how much of the recent 
behaviour might be due to natural variability.  

The observed and predicted changes in polar regions have significant implications. In the Arctic, sea-ice 
changes will directly impact shipping, resource extraction, pollution, and coastal erosion, affecting the lives 
of inhabitants and those who operate in that region. In the Antarctic, ocean circulation changes will affect the 
rate of heat and carbon uptake in the Southern Ocean, and could have implications for the stability of the 
West Antarctic ice shelf. There is, therefore, a pressing societal need to improve the reliability of climate 
model predictions in polar regions, including both the response to anthropogenic forcings and our 
understanding of the decadal-timescale variability. The spatial-temporal coherence of this variability offers 
the hope that some component of it might actually be predictable, given knowledge of the initial state, and 
the initial state could also be important for the response of the polar regions to anthropogenic forcing. 
However at this point we do not really know which measurements are most important for constraining that 
state. In addition to the societal benefits that would result from improved predictions, we would also be in a 
better position to explain the variability in the evolving climate record. 

Because of the strong coupling that exists in polar regions between ocean, sea ice, troposphere and 
stratosphere, it is necessary for all these scientific communities to work together in order to make significant 
progress on these problems. This was the motivation behind the WCRP Workshop on Seasonal to Multi-
Decadal Predictability of Polar Climate, which brought together approximately 80 experts on polar climate 
variability and predictability from around the world, representing not only the above-mentioned range of 
physical disciplines but also observations, theory, processes, and modelling, and with a bi-polar, global 
perspective1. The purpose of the workshop was to summarize the current state of knowledge and identify 
concrete steps to improve our predictive capability in polar regions. The workshop was hosted by the 
Bjerknes Centre at the University of Bergen, and was formally opened by the Rector of the University, 
Sigmund Grønmo. JSC Chair Tony Busalacchi also provided welcoming remarks on behalf of the WCRP. 

                                                        
1 Copies of the presentations can be found at 
http://www.atmosp.physics.utoronto.ca/SPARC/PolarWorkshop/presentations_bergen.htm  
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Reports on scientific sessions 
 
A preliminary session provided some background context. Ted Shepherd presented the scientific motivation 
for the workshop (as described above), and emphasized the role of the oceans, sea ice, land surface and 
stratosphere as inherently stable parts of the climate system, with significant inertia, which provide non-
trivial boundary conditions (with memory) for the variability that is ultimately driven by the unstable 
troposphere (Figure 1). This suggests that the key to improved prediction is understanding and accurately 
representing the sources of memory within the different climate system components, and the feedbacks 
between them.  The stratosphere is a special case because it also represents a source of external forcing 
(ozone depletion, ozone changes due to solar variability, aerosols due to volcanic eruptions and possibly 
geoengineering), in addition to GHG forcing. Ben Kirtman reviewed recent progress in seasonal to decadal 
prediction, which lies between the two extremes of weather prediction (dependent entirely on initial 
conditions, and essentially deterministic) and centennial timescale climate projections (dependent mainly on 
external forcings). Modern seasonal prediction relies almost entirely on the predictability of ENSO and the 
skill is generally confined to temperate latitudes. There are believed to be untapped sources of seasonal 
predictability in the stratosphere, in sea ice, and in the land surface (including snow cover), which are all 
operative at high latitudes — stratosphere-troposphere coupling is strongest in polar regions — so inclusion 
of these processes should improve predictive skill at higher latitudes. On decadal timescales, the 
extratropical ocean is also believed to represent an untapped source of predictability. George Boer 
highlighted the rapidly growing scientific interest in decadal predictability, though noted that the decadal 
timescale was more of a human than a physical timescale. He reviewed recent studies of predictability in 
polar regions from a “potential predictability” perspective, which uses a “perfect model” framework to 
identify what fraction of the year-to-year changes might consist of long-timescale processes (including the 
forced component) that are potentially predictable given sufficient knowledge of the initial state, as opposed 
to unpredictable climate noise. These studies hint at some potential predictability in polar regions (Figure 2), 
but it is not yet clear how large or useful this will be. Some open issues raised by the talks by Kirtman and 
Boer included the use of a multi-model ensemble (which seems invariably to outperform the “best” models, 
even for the same ensemble size), how to best combine dynamical and statistical approaches, and how to 
objectively define the potentially predictable as opposed to noisy part of the signal. In the end, predictability 
is a property not just of the physical system but also of the filter we apply to it, which depends on the 
application. 

Session 1 was devoted to the mechanisms that rule sea ice variability, the way they are represented in 
models, and the processes that may help us in providing useful predictions. Hugues Goosse discussed the 
observed and simulated variations over the last centuries. He insisted on the fact that the last 30 years are not 
necessarily representative of the full range of variability of the system and thus collecting and analyzing 
longer time series is needed, in particular to evaluate adequately the variability simulated by models. Ron 
Kwok presented a comparison of simulated and observed ice motion and ice transport. He highlighted that 
many models have strong biases that needs to be reduced in order to improve our ability to make good 
predictions. Cecilia Bitz discussed different mechanisms that could lead to predictability in the system, 
analyzing ensembles of simulations with a coupled general circulation model (GCM) and observations. 
Reemergence of anomalies in different seasons related to sea surface temperatures (SSTs) (linked with ice 
concentration changes) or changes in ice thickness appeared to be particularly promising for predictions of 
northern hemisphere sea ice area on time scales of a few months (Figure 3). Jim Overland proposed a 
hypothesis in which a reduced summer ice cover would lead to a warmer fall in the Arctic, inducing a 
decrease in atmospheric geopotential height and a large scale reorganization of the atmospheric circulation 
that may be characterized by a low index of the Arctic Oscillation. If this mechanism is valid, this would 
have a strong impact on predictions at seasonal scale as well as on long term changes because of the strong 
decreasing trend in Arctic ice extent projected for the next decades.  
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Marilyn Raphael described the sea-ice variability in the Southern Ocean and its links with atmospheric 
changes. Sea ice is influenced by all the known modes of atmospheric variability in the southern hemisphere: 
the Southern Hemisphere Annular Mode (SAM), the Pacific Southern America (PSA) pattern, the Semi-
Annual Oscillation (SAO), and the Zonal Wave 3 (ZW3). However, none of them explains a lot of the sea 
ice variance integrated over the whole Southern Ocean, probably because those modes were defined as 
atmospheric modes, rather than in terms of their impact on sea ice. François Massonnet discussed the 
importance of model physics, resolution and forcing in simulations of Arctic and Antarctic sea ice variability 
performed with an ocean-sea ice model driven by atmospheric reanalyses. A good forcing was found to be 
essential. Model physics appeared crucial in order to reproduce well the variability in the Arctic, in particular 
in summer, while the improvements brought by a more sophisticated model were less clear in the Southern 
Ocean. In the range of resolutions tested (between 0.5 and 2°), the resolution of the sea ice model was not the 
most critical issue. Katharine Giles discussed the available satellite observations of sea ice thickness and 
how they could be used to make skillful decadal predictions. Analyzing observed sea ice thickness and 
concentration, she showed that the summer extent is well correlated with the thickness of the following 
winter but not with that of the previous winter, suggesting that summer extent could help in estimating the 
next winter’s ice thickness. 

Session 2 began with a review by David Holland of challenges in understanding and modelling cryospheric 
processes with an emphasis on ocean ice-shelf interactions relevant to, for example, Greenland glacial fjords 
and the West Antarctic ice sheet. He emphasized the key role of intrusions of warm deep water in ice-shelf 
melt. Unfortunately, warm deep water can neither be seen from space nor inferred from gravity. Karen 
Heywood then discussed the physics and observations of Antarctic Bottom Water formation, and the extent 
to which global climate models are able to capture the large-scale circulation features in the Southern Ocean. 
She argued that while climate models seem to provide a reasonable representation of the transport of 
intermediate water, they are much worse at representing the transport of surface and bottom water. 
Moreover, climate models form deep water incorrectly through open-ocean convection. The next two talks 
reviewed open ocean processes and the dynamics of the Antarctic Circumpolar Current (ACC).  Sarah Gille 
discussed observed recent changes in the hydrographic structure (including ocean heat content) and frontal 
positions of the ACC (Figure 4), emphasizing that we do not really understand the causality underlying 
those changes. While studies with non-eddy-permitting ocean models suggest that the shifts in the ACC front 
have been driven by the changes in the SAM, others have argued that ocean eddies buffer this effect and lead 
to a very different sensitivity. This is clearly an important issue to resolve in the future. John Marshall 
discussed the central role of the Southern Ocean in the upwelling branch of the global overturning 
circulation. It is important to understand which parts of this circulation are relaxational (i.e. can 
accommodate changes elsewhere) and which are ‘choke points’ that require forcing. In particular, it is not 
entirely clear the extent to which atmospheric wind stresses and heat fluxes, and winter sea-ice cover, may 
respond to as well as drive Southern Ocean upwelling. 

The focus then shifted to the northern hemisphere. Andrey Proshutinsky pointed to the role of the wind 
driven Beaufort Gyre, alternating between a strong anticyclonic regime accumulating ice and fresh water, 
and a weaker cyclonic regime releasing the fresh water to the North Atlantic and influencing the overturning 
circulation. Cecilie Mauritzen emphasized the revolution that has occurred in recent years in near real time 
data acquisition in the Arctic and Sub-Arctic, with more than 30,000 Argo, Ice-Tethered Profiler (ITP), 
glider, and seal-borne CTD profiles obtained since 2001. The new data will give us the opportunity to 
narrow down the uncertainties in ocean heat content, fresh water content, and density both for reanalysis and 
operational products. Svein Østerhus reviewed the direct measurements of mass, heat and salt exchanges 
between the North Atlantic and the Arctic. More than 10 years of measurements show no trends in volume 
transports, but there has been a rapid increase in heat and salt fluxes. Tor Eldevik noted that the exchange of 
mass, heat and salt over the Greenland-Scotland ridge can be described mathematically by three forced 
conservation equations. With this approach the sensitivity of the transports to changes in hydrography or 
forcing can be tested. Climate models that fail to reproduce the three distinct water masses at the ridge will 
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respond differently to forcing perturbations. While oceanic responses to atmospheric forcing are well 
documented in observations and models, mechanisms for oceanic forcing of the atmosphere outside the 
tropics are less well understood. Arnaud Czaja proposed a new mechanism for ocean-atmosphere coupling 
in the extra-tropics. While the textbook version is that a warmer ocean surface heats the atmosphere above 
and creates a baroclinic response, surface temperatures can set the atmospheric lapse rate over the warm 
western boundary currents and thus communicate the temperature signal throughout the entire troposphere. 
These moist neutrality situations are currently not parameterized in global atmospheric models, leaving a 
potential for prediction yet to be fully investigated.   

Session 3 examined the role of the stratosphere in predictability. Paul Kushner discussed mechanisms for 
coupling between the stratosphere and the troposphere. He distinguished between direct effects of 
stratospheric changes on the troposphere, and indirect effects whereby the state of the stratosphere affects 
teleconnections (e.g. from ENSO) within the troposphere. He also emphasized the impact of model biases, 
e.g. models with too long annular-mode timescales exhibit overly strong annular-mode responses to external 
forcings. Shigeo Yoden reviewed insights obtained from mechanistic models concerning internal and 
externally forced variability of the wintertime stratospheric polar vortex, which dominates stratospheric 
variability. The use of a mechanistic model permits very long simulations (e.g. 15,000 years), which are 
needed to fully characterize the PDFs of stratospheric variability because of the large amount of decadal 
variability and high degree of intermittency in Stratospheric Sudden Warmings (SSWs). Ted Shepherd 
reviewed basic aspects of stratospheric variability, and summarized the various physical mechanisms for 
memory in the stratosphere on both seasonal and interannual time scales, including tropical-polar coupling. 
Stratospheric models (whether simple or complex) and observations both exhibit strong decadal-timescale 
variability, but it has yet to be determined how predictable it is.  

Judith Perlwitz discussed the impact of the Antarctic ozone hole on the Southern Hemisphere (SH) 
high-latitude summertime troposphere, which is by far the clearest instance of a stratospheric influence on 
surface climate, and is a predictable signal since it is associated with stratospheric halogen loading. 
The surface impact of the ozone hole involves a strengthening and poleward shift of the tropospheric jet 
(represented by the SH Annular Mode (SAM)), and has implications for the ocean circulation, which are 
beginning to be studied. The anticipated recovery of stratospheric ozone over the coming decades implies 
that this component of the recent climate trends will be reversed, with the latest model studies suggesting a 
near cancellation for summertime trends between the effects of ozone recovery and GHG forcing over the 
next half century. Julie Arblaster discussed the response of the SAM, which controls much of SH climate, 
to future GHG and ozone forcing, emphasizing that the response to ozone forcing is mostly confined to the 
summer season. She found that the circulation response to GHG forcing is strongly related to climate 
sensitivity and arises more from the warming of the tropical upper troposphere, which previous studies have 
shown induces dynamical (momentum flux) feedbacks through a strengthened subtropical jet, than from 
polar cooling. Michael Sigmond addressed the question of whether the ozone hole might explain the 
observed increase of Antarctic sea-ice extent. In his coupled model simulations, with a non-eddy-permitting 
ocean model, the ozone hole led, instead, to a reduced sea-ice extent. This decrease is consistent with a 
mechanism involving enhanced offshore Ekman sea ice transport arising from the stronger westerlies. 
A poster by Cecilia Bitz also found a decrease in sea-ice extent in response to the ozone hole employing a 
different model. However, she found that the response was significantly smaller when the ocean model 
resolution changed from non-eddy-permitting to eddy-permitting, owing to a significant reduction in the 
poleward heat transport response at higher horizontal resolution. This result is consistent with the ‘buffering’ 
effect of eddies that was discussed by Sarah Gille (see above). Julie Jones presented a reconstruction of the 
SAM index over the entire 20th century. This record is important because there is a paucity of long data sets 
for SH high latitudes. She found that in DJF the recent increase of the SAM index was unprecedented in the 
historical record, so presumably a response to forcing (which models suggest has mainly come from the 
ozone hole), whereas in MAM the recent increase was large but still within the range of natural variability 
(Figure 5). No SAM trends were identified in either JJA or SON. 
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Session 4 focussed on predictability of the Arctic climate system, and covered ocean-atmosphere exchanges, 
mid-latitude-Arctic coupling, high-latitude-terrestrial predictability, sensitivities and feedbacks in the Arctic 
system, and the use of models for prediction.   Xiangdong Zhang showed how an observational constraint 
(the sensitivity of Arctic sea ice extent to air temperature) could be used to narrow the range of future sea ice 
projections obtained from global climate models.  Zhang also showed how the recent loss of summer Arctic 
sea ice is part of a broader Rapid Change Event involving a shift of the atmospheric circulation.  
Hiroshi Tanaka discussed the role of the Arctic Oscillation (AO), which explained about half the Arctic 
warming from the 1960s to the 1990s.  He showed that the AO is almost dynamically orthogonal to the 
“global warming” component of the recent Arctic change.   

Michael Karcher documented the variability of the Atlantic Water inflows and outflows, for which the 
Arctic Ocean acts as a switchyard (Figure 6).  While these inflows have subpolar origins, the Nordic Seas 
impose their imprint.  Karcher showed that North Atlantic inflow anomalies may impact the deep water 
overflows about 10-15 years after entering the Arctic Ocean, implying some potential predictability of 
overflow variability.  Koji Shimada showed that the recent reduction of sea ice in the western Arctic Ocean 
is due to a combination of three factors: heat, preconditioning, and winds.  The inflowing Pacific Summer 
Water is a source of heat, but its impact on sea ice is amplified by wind-driven changes in the Beaufort Gyre 
dynamics and the interplay with reduced ice concentrations, Ekman pumping, and topography.  
Mark Serreze discussed the broader issue of polar amplification, and showed that its strongest manifestation 
in the cold season and the marginal ice zone is indicative of a contribution of a feedback arising from the 
reduced sea ice.  There is a need for coordinated model experiments to assess the impacts of the reduced sea 
ice extent on the atmospheric circulation elsewhere in the northern hemisphere. 

In the first of the “terrestrial” presentations, David Lawrence showed that in CCSM3 21st century A1B 
simulations, the rate of warming over Arctic land areas is enhanced by 1-2°C/decade in autumn and winter 
during periods of rapid sea ice loss (Figure 7). He showed that the same seasonality and spatial pattern of 
Arctic land warming was also found in AMIP-type experiments forced by the sea ice loss projected by 
CCSM3 by the end of the 21st century. Lawrence also showed that 21st century simulations are accompanied 
by substantial changes of permafrost as defined by the ground temperature at 3 m depth.  Andrew Slater 
addressed the simulation of snow and soil temperature within a data assimilation framework.  There are 
severe problems with the available data coverage for these variables, especially in the case of snow water 
equivalent and depth, despite the potential importance of these variables for predictability on seasonal 
timescales.  Finally, Hugh Morrison showed that climate models poorly simulate Arctic clouds, especially 
the partitioning of condensate into the liquid and ice phases.  A key question is whether the frequency of 
occurrence of different cloud states can be related to certain parameters available at the grid-cell scale.  
Large-Eddy-Simulation experiments can be exploited for this purpose. 

Alex Hall used a suite of CMIP3 simulations to assess the predictable component of Arctic change that is 
anthropogenically driven.  Polar amplification is seen in the surface air temperature, but not in the heat 
content of the upper ocean, pointing to atmospheric processes as the key to the large spread in the models’ 
polar amplification.  The main predictor of a model’s response to GHG forcing is the longwave feedback 
parameter under clear-sky conditions.  The models’ low-level stratification is closely tied to this feedback, 
and the models with strong near-surface stratification show relatively little warming because of strong 
longwave cooling.  In general, the models’ surface-based inversions are too strong.  Hall further showed that 
the spread in models’ rates of sea ice loss is related to two factors: the initial area of thin (<0.5 m) sea ice, 
and the longwave feedback parameter (Figure 8).  Jens Christensen raised the issue of potential 
nonlinearity in the systematic errors of regional climate models, identifying cases where systematic errors in 
surface temperature had a strong dependence on temperature over particular European regions. Further work 
is needed to place these dependences into a framework of GHG-induced warming. Annette Rinke reported 
on an ensemble of 15-month hindcast simulations starting in March and September of various years of the 
1979-2009 period.  The experiments included various combinations of atmospheric, sea ice/SST, and snow 
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initializations.  One of the key findings was that certain atmospheric conditions are more predictable than 
others. 

Session 5 consisted of two parts: one on seasonal predictability involving sea ice or snow as predictors, and 
one on seasonal to decadal predictability involving fully coupled global climate models. Mark Baldwin 
reviewed the evidence for the influence of stratospheric wintertime variability on surface weather regimes. 
Weak and strong stratospheric vortex events have been shown to influence the frequency distribution of 
AO/NAO conditions up to 60 days after the events. Unfortunately the seasonal forecast models all 
underestimate stratospheric variability, indicating that there is still a way to go before the maximum forecast 
skill from stratospheric effects is realized. Yvan Orsolini used the coupled ECWMF seasonal prediction 
system to show that sea-ice anomalies provide some predictability of Arctic surface air temperature during 
autumn and early winter (Figure 9), consistent with David Lawrence’s inferences (see above) using GCM 
studies, and also that autumn sea ice variability can induce deep temperature anomalies throughout the 
troposphere and circulation changes influencing East Asia early winter climate. Orsolini also used an 
atmospheric GCM to show that Eurasian autumn snow cover can influence atmospheric wave trains over the 
North Pacific and eventually over the North Atlantic. Judah Cohen pointed to autumn snow cover over 
Eurasia as a precursor for stratospheric variability. More snow and a strengthened Siberian High appear to 
strengthen the Rossby-wave flux into the stratosphere, weakening the polar vortex and thus favouring 
negative AO situations. Cohen also presented an experimental prediction of the winter 2010/2011 conditions 
based on his approach. That prediction was then updated and presented to WCRP (Vladimir Ryabinin) on 30 
November 2010. As shown by the verification made at the beginning of March 2011 (Figure 10a), the 
prognosis (Figure 10b) turned out to be highly successful and correctly predicted the winter temperature 
anomaly pattern for the entire extratropical Northern Hemisphere. 

In parallel with such observational and reanalysis studies, efforts are being made to improve the ocean/ice 
assimilation and forecasting systems. Two different methods were presented; one using the Ensemble 
Kalman Filter approach (François Counillon), and a second using a four-dimensional variational approach 
(Frank Kauker). Using data assimilation it is possible to identify key parameters or areas that are 
particularly sensitive to perturbations, and thus guide process studies or measurement campaigns. In recent 
years there has been a large increase in studies related to decadal climate forecasts. Three talks were given 
on this subject, all demonstrating that hindcast experiments do show promising skill both in real and 
idealized experiments. Johann Jungclaus focused on the sources and impacts of variations in the Atlantic 
meridional overturning circulation. Time scales and mechanisms differ between models, and more work is 
needed to identify those that work in the real world. Doug Smith showed that the North Atlantic also plays 
an active role through Subpolar Gyre dynamics, with links to tropical convection and hurricane frequency. 
Of particular interest is the near collapse of the Subpolar Gyre around 1995, seen from altimetry and 
downstream hydrography, which was discussed by Ed Hawkins. The fact that the climate models reproduce 
this event in forecast mode (Figure 11) indicates that the anomalous atmospheric forcing that year (record 
low NAO after many positive years) played a smaller role than previously believed.  John Walsh gave the 
final talk in the session. He showed that model ensembles are generally more skillful in reproducing Arctic 
climate variations than single models, but only to a certain extent. The skill of the ensembles is reduced if the 
models with the largest biases are included. In general the models with the best performance also tend to 
show a stronger sensitivity to greenhouse forcing. Some predictability is expected from low-frequency 
variability in the Arctic climate.  
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Synthesis 
 

We understand many of the physical sources of predictability in the polar climate system. For sea ice, 
memory resides in sea-ice thickness, rather than sea-ice extent, and springtime ice-thickness anomalies can 
re-emerge in the fall with the summertime memory provided by the ocean. The initial sea-ice thickness 
distribution is the main control on modelled Arctic sea-ice loss for the first half of the 21st century. For snow, 
memory resides in snow depth (or snow water equivalent). There is longer-term memory in permafrost, 
whose disappearance can lead to an albedo feedback through rapid growth of shrubs. For the ocean, SST 
anomalies have a seasonal memory while longer-term memory resides in the heat and salinity of subsurface 
water masses, which provide a mechanism for lagged teleconnections. In the Antarctic there is also 
substantial memory provided by the baroclinic component of the ACC, which exerts a control on the Atlantic 
Meridional Overturning Circulation. For the atmosphere, there is seasonal memory in the stratosphere, which 
modulates tropospheric variability, because of the long radiative timescales in the lower stratosphere and the 
strong seasonal cycle of stratospheric polar variability. There is also longer-term memory in tropical 
stratospheric winds, manifested in part by the QBO. The Antarctic ozone hole has been the principal driver 
of summertime trends in SH high-latitude surface climate over the last few decades, which may cease or 
even reverse as the ozone hole recovers over the coming decades. 

Although the field is still in its infancy, early results concerning the extent of polar predictability show 
promise. . Most of these efforts have taken place in Europe or North America and have therefore focused on 
the Arctic and North Atlantic. Operational seasonal prediction systems for the Arctic show the impact of 
summertime sea-ice and fall Eurasian snow-cover anomalies, and September Arctic sea-ice extent appears to 
be predictable given knowledge of the springtime ice thickness or early to mid summer sea ice extent. 
Stratospheric Sudden Warmings provide further predictability during winter and spring once they occur, 
although the extent to which they are themselves predictable is still unclear. On longer timescales, studies of 
potential predictability within a “perfect model” framework suggest multi-year predictability of the internal 
variability over the high-latitude oceans in both hemispheres, and the first attempts at decadal prediction 
have identified the Atlantic subpolar gyre as a key source of predictability, with a teleconnection to tropical 
Atlantic SSTs.  

What we lack is a good understanding of many of the feedbacks between the different components of the 
climate system. The precise dynamical mechanisms of stratosphere-troposphere coupling remain to be 
elucidated, although they appear to be well represented in models with sufficiently good climatological mean 
states. The robust surface responses to stratospheric variability and trends are in surface winds and mean-sea-
level pressure gradients, which are dynamically controlled; the surface temperature responses, which are 
more thermodynamically controlled, are less clear except where they result from advection. The response of 
Arctic sea ice to surface winds appears to be well understood, but the origin of the overly pole-centric 
Beaufort Gyre in climate models, which induces significant biases in sea-ice export through the Fram Strait, 
is not well understood. Although the basic mechanisms of Arctic amplification of GHG-induced warming, 
which involve feedbacks from sea ice and ocean, are well understood, there are large uncertainties in the 
magnitude of the surface temperature response arising from uncertainties in the response of Arctic clouds 
and systematic model biases in boundary-layer stability. While global ocean models generally have a good 
representation of intermediate-water transport, they have a very poor representation of the transport of 
surface and bottom water, and incorrectly form deep water by open-ocean convection. This could 
compromise the realism of the response of the ocean circulation to surface buoyancy forcing. In the SH, the 
response of the ACC and of poleward ocean heat transport to surface wind trends seems to be very different 
in eddy-permitting and non-eddy-permitting ocean models, suggesting that the latter may have 
non-conservative eddy parameterizations that do not correctly “buffer” the ocean response to wind stress 
forcing.  
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As a result of all these weaknesses in our knowledge, we do not well understand the physical causality of the 
large-scale modes of polar variability that are evident in the observed record. This compromises our ability 
to design appropriate observation, assimilation, and modelling systems for polar prediction, and to explain 
the observed record. 

Unfortunately, we lack many of the key observations needed to constrain the presumed sources of polar 
predictability; examples include snow depth and snow water equivalent (estimates from passive microwave 
instruments are widely regarded as useless), sea-ice thickness (estimates from laser altimetry may be 
acceptable, but they are not now available in real time), polar ocean state estimates including Antarctic warm 
deep water, and stratospheric tropical winds. An exception is the salinity and heat anomalies entering and 
exiting the Nordic (GIN) Seas, which appear to be well constrained by hydrographic data in the limited 
number of communicating channels. However, there has been an explosion of new subsurface ocean 
observations in the last decade or so from Argo floats and from the recent “seal” network, which are 
revolutionizing the polar ocean observing system. These observations provide new opportunities for model 
validation — probably best performed in observation rather than model space, to avoid introducing errors 
from interpolation, and with a focus on “process-oriented” diagnostics that are not overly sensitive to the 
time period considered — and offer the potential for vastly improved estimates of the ocean state, a 
prerequisite for polar predictability. Nevertheless, since the “repeat cycle” for seasonal and especially 
decadal predictions is rather long, prediction systems will continue to be tested in hindcast mode, for which 
our poor historical knowledge of the ocean and sea-ice initial states will surely represent a major limitation.  

 

Next Steps 
 

In considering what can be done by the WCRP to make progress in polar predictability, it needs to be borne 
in mind that it is not the job of the WCRP to coordinate climate science. Nor is there much point in making 
unsolicited research recommendations. Rather, the WCRP aims to identity those aspects of climate science 
that benefit from international coordination. That means identifying particular gaps, typically where efforts 
by individual scientists or groups have run into a wall because of the lack of a wider effort. Since the WCRP 
has no staff of researchers, high-impact initiatives addressing those gaps need to be developed that can rally 
the community behind them and attract the support of funding agencies. In order to maintain momentum, 
these initiatives need to define achievable, tangible deliverables within a broader strategic research plan that 
is both scientifically exciting and societally relevant. Those deliverables need to leverage existing activities 
to the extent possible.  

There was a clear consensus at the workshop that a notable gap was that between scientific communities, as 
most people knew only a small minority of the other participants. As discussed above, it seems apparent that 
progress in polar predictability will require crossing disciplinary boundaries to understand the feedbacks 
between the troposphere and the stratosphere, ocean, land, and sea ice. In the discussions, it became evident 
that the nature of these feedbacks appears to be somewhat different in the two hemispheres, because of the 
different geometries, leading to rather different scientific questions.  

In the Arctic, the ocean is contained within a basin with a couple of entry/exit points, and sea ice covers the 
polar region, allowing a strong ice-albedo feedback. While there are certainly important dynamical processes 
— e.g. the export of sea ice through the Fram Strait depends on the position and strength of the Beaufort 
Gyre — climate scientists tend to treat the Arctic primarily from a thermodynamic perspective, focusing on 
budgets of heat and (in the ocean) salinity. Probably the most burning societal question is the rate of 
warming in the Arctic, as this has numerous local consequences, including those that relate to an ice-free 
summertime Arctic. Whilst it is plausible that the most extreme model predictions of summertime sea-ice 
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loss are in fact our best predictions, and that the observed rate of decrease in summertime sea-ice extent is 
well understood, the confidence we have in those statements needs to be greatly strengthened. 

In the Antarctic, the ocean is annular, sea ice is largely seasonal, and the centre of the polar region is covered 
by land ice and ice shelves. While there are certainly features of interest arising from the longitudinal 
asymmetry of the Antarctic continent, the dominant climate structures are the circumpolar jets in atmosphere 
and ocean, and climate scientists tend to treat the Antarctic primarily from a dynamical perspective, focusing 
on eddy momentum fluxes and jet shifts. Furthermore the largest observed changes in the Antarctic (which 
occur in summertime) are thought to be associated with the stratospheric ozone hole, reinforcing this 
dynamical perspective. On the other hand, the basic mechanisms for polar amplification (sea ice-albedo 
feedback, enhanced atmospheric latent heat flux) also exist in the Antarctic but are being delayed by deep 
ocean heat uptake, although it is unclear how well climate models represent this delay. Probably the most 
burning societal question is what is the true response of the ocean circulation to the strengthening and 
poleward shift of the tropospheric jet, and how will this change in the future as the ozone hole recovers while 
greenhouse gas concentrations continue to increase, as this has implications for Southern Ocean upwelling 
and carbon uptake, and possibly for the long-term stability of the West Antarctic ice shelf. In contrast to the 
situation in the Arctic, there is as yet no plausible explanation for the observed increase in Antarctic sea-ice 
extent, which remains a major scientific puzzle. 

These are, of course, just the current questions, but we can be sure that they will remain “grand challenges” 
for some years yet, and furthermore that answering them (and comparing and contrasting the behaviour of 
the two hemispheres) will advance our understanding of the fundamental processes and feedbacks 
underlying polar predictability. At the same time, a number of general issues and opportunities were 
identified which apply to both poles: 

 (i) A better understanding of seasonal predictability, not only for its societal benefits but also for 
understanding the seasonality of longer-term variability and changes. The WCRP’s Working Group on 
Seasonal to Interannual Prediction (WGSIP) has the infrastructure to perform prediction studies but needs 
the expertise of polar scientists to interpret the results of those studies in polar regions and design new 
experiments. 

(ii) A better understanding of decadal variability and its partitioning between internally generated and 
externally forced components. The WCRP’s Working Group on Coupled Modelling (WGCM) has defined a 
set of coordinated experiments focusing on the near term (i.e. several decade) time horizon within its CMIP5 
activity, which will provide a large archive of model simulations that can be analyzed from this perspective. . 
In addition to the external forcings identified here, aerosols and solar variability also provide potential 
sources of decadal predictability. It will furthermore be necessary to improve our knowledge of the nature 
and extent of past polar climate variability, using proxy information where necessary. 

(iii) Improved initial state estimates. Potential improvements in existing observations (or their availability) 
need to be identified for action by the relevant agencies; coupled assimilation systems including snow and 
sea ice need to be developed, in collaboration with weather prediction centres who are wrestling with this 
issue as part of their efforts to improve polar weather prediction; and there needs to be a better understanding 
of the sensitivity of polar predictability on decadal timescales to initial-state error in the ocean, to guide 
ocean observational network design.  

(iv) A better understanding of potential predictability. The value of a “perfect model” methodology hinges 
entirely on how realistic the model is. In cases where models have some basic credibility, this approach can 
be exploited to determine where the predictability lies. In other cases, key model processes that are holding 
back progress need to be identified for a targeted effort at improvement, either capitalizing on existing 
activities (e.g. the various GEWEX groups targeting model parameterizations) or stimulating new activities 
(e.g. modelling of sea ice and ice shelf-ocean interactions). In addition to the model deficiencies identified 
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here, models do a poor job of simulating the radiation budget over the Southern Ocean because of a poor 
treatment of clouds, and this is likely to be an impediment for studies of polar predictability. 

The conclusion of the workshop was that a cross-cutting WCRP initiative was needed in the area of polar 
predictability, whose first action would be to hold a focused meeting in about six months’ time, to develop a 
detailed implementation plan concerning the above issues. In developing such a plan it will of course be 
necessary to engage and partner with other relevant research bodies, such as SCAR for the Antarctic and 
IASC for the Arctic. It was felt that although there were important differences between the Arctic and 
Antarctic which could lead to differences in priorities, there were also considerable scientific and logistical 
benefits to be obtained by considering the two poles in parallel, and within the context of global climate. In 
any case such an approach would emphasize the distinctive contribution of the WCRP. Therefore it was 
suggested that there should be a single initiative, but with distinct Arctic and Antarctic foci where 
appropriate. Such an initiative would have to complement existing WCRP activities and exploit potential 
synergies with the WWRP Polar THORPEX Project. 
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Figure 1. Evidence for the role of the stratosphere in modulating tropospheric teleconnections.  

A 5-member ensemble of AMIP-type simulations with the Météo-France model (red shading, with the thick 
red curve the ensemble mean and the dashed lines +/- 1 standard deviation) is not able to reproduce observed 
(black curve) interannual variations in the DJF surface Northern Hemisphere Annular Mode (NAM) over the 
1971-2000 time period, represented here by the principal component of surface pressure north of 20°N, when 
constrained only by SSTs (left panel), but does so extremely well when the extratropical stratosphere is 
nudged to ERA-40 reanalyses (right panel). R is the ensemble mean anomaly correlation coefficient with 
ERA-40. From Douville (2009 GRL). 
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Figure 2.  Evidence for decadal predictability of surface temperature at high latitudes from low-
frequency internal variability, based on a “perfect model” diagnosis.  

The colours show the fraction of the internally generated temperature variance accounted for by decadal and 
longer timescales within a multi-model ensemble of unforced control simulations in the CMIP3 archive.  The 
presumption is that these long timescales are “potentially predictable” with sufficient information and 
knowledge (see also Boer and Lambert 2008 GRL). 
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Figure 3. Evidence for seasonal predictability of summertime sea ice based on “perfect model” 
experiments.  

The red, green, blue, and cyan coloured curves in the figure show the growth of the standard deviation of 
northern hemisphere sea ice area across an ensemble of model simulations where each member was 
initialized with identical sea ice, ocean, and land surface conditions, starting from different points in the year. 
The black dashed curve is the saturation level of the standard deviation from a long control run. The 
coloured curves lie below the black curve, indicating that sea ice area is potentially predictable for up to a 
year in advance. The initial loss of potential predictability is faster for start dates in the summer season. 
Nonetheless, based on these experiments, perfect knowledge of the initial conditions in winter only offers 
modest predictability of sea ice area in the following summer. Figure courtesy of Cecilia M. Bitz, University 
of Washington. 
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Figure 4. Evidence for decadal predictability in the Southern Ocean from long-term 
(presumably forced) changes.  

The different curves show estimates of changes in the mean latitudinal position of the fronts that comprise 
the ACC, as inferred from satellite altimeter measurements.  (Here, SAZ/STZ is the Sub-Antarctic 
Zone/Sub-Tropical Zone; SAF is the Sub-Antarctic Front; PF is the Polar Front; and SACCF is the Southern 
ACC Front.). The ACC has shifted poleward by about 60 km over the last 15 years. From Sokolov & Rintoul 
(2009 JGR). 
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Figure 5. Evidence for decadal predictability of changes in southern hemisphere summertime 
atmospheric circulation from ozone depletion and GHG changes.  

30-year trends calculated from reconstructions of the 20th century Southern Hemisphere Annular Mode 
(SAM) index (left panels) show that the recent summertime trends are unprecedented in the historical record, 
indicating that they are a response to external forcings. The CMIP3 model simulations (right panels) suggest 
that the dominant component of the forcing in this season is due to stratospheric ozone depletion. In other 
seasons, ozone has a negligible impact and the recent trends are just becoming significant in the fall season, 
but not in the spring, where the simulated trends are too strong. No significant winter trends are evident in 
reconstructions or simulations. The dotted lines represent the range of internal climate variability from the 
model’s pre-industrial control simulations (left panels), rescaled by the square root of six (the number of 
non-ozone models) (right panels).  From Fogt et al. (2009 J. Clim.). 
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Figure 6. Physical mechanisms of decadal predictability associated with the production of 
Denmark Strait overflow water (DSOW), which is a major source of North Atlantic deep water. 

The North Atlantic inflows come through just two entry points, the Faroe-Shetland Channel (FSC) and the 
Iceland-Faroe Ridge (IFR), and then are modified by surface fluxes while they transit through the Nordic 
seas. The Arctic Ocean and Barents Sea act as ‘switchyards’, adding decadal-timescale delays to the system. 
These delays are variable in time and differ for surface and mid-depth waters. The latter feed the overflows 
and offer a predictive potential in the form of transient anomalies of the density stratification. For the 
mid-depth the figure shows a schematic circulation of Atlantic derived water (red solid) and dense, deep 
water (black dashed). From Karcher et al. (JGR, in revision). 
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Figure 7. Evidence for decadal-scale impact of sea ice loss on Arctic land warming rates.   

(a) Composite anomaly time series of September sea ice extent (solid line) and October-November-
December (OND) surface air temperature Tair (dashed line) over the Arctic land area (within 65–80°N, 60–
300°E). Composites are formed by averaging nine 31-year anomaly time series that are centred about the 
mid-point (lag 0 years) of a rapid sea ice loss event simulated in a CCSM3 21st century A1B simulation. 
 The individual time series are anomalies from the lag -10 to -5 year mean. (b) Average monthly Arctic land 
Tair trends during periods of rapid sea ice loss compared to periods of moderate sea ice loss. The asterisks 
indicate the months for which the differences in the trends are statistically significant at the 90% (single 
asterisk) and 95% (double asterisk) levels. The largest impact is found in autumn and winter. (c), (d) Maps of 
Tair trends for OND during periods of rapid and moderate sea ice loss. From Lawrence et al. (2008 GRL). 
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Figure 8. Mechanisms controlling spread in the Arctic climate change predictions of the CMIP3 
models.  

Left: Relationship between winter inversion strength and annual-mean Arctic warming by the 22nd century 
(A1B emissions scenario). The stronger the inversion, the more heat is lost by cooling to space (mainly from 
clear-sky conditions), and the smaller the overall annual-mean warming.  The observed inversion strength 
lies at the left end of the model range, suggesting the models may have unrealistically high levels of negative 
longwave feedback.  Right: Fraction of explained variance in Arctic sea-ice extent changes in CMIP3 models 
from present day to the indicated year, from the radiative feedback parameter λ (mainly related to inversion 
strength) (black) and the climatological extent of thin sea ice (grey). These two parameters, which can both 
be constrained by observations, account for nearly all the predicted changes in sea-ice extent, with the latter 
dominating in the first few decades and the former dominating later in the century. From Boé et al. (2009 
J. Clim.; 2010 Clim. Change Lett.). 
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Figure 9. Evidence for enhanced seasonal predictability of Arctic surface air temperature during 
fall and early winter 2007 from prescribing sea-ice extent in ensemble hindcasts based on the ECMWF 
coupled seasonal prediction system.  

Record low summertime sea-ice extent occurred in 2007. The 2-day mean anomaly correlation coefficients 
are shown as a function of forecast day (starting October 1, 2007), and calculated over high latitudes (60°N-
90°N). Each black vertical bar is the envelope of the 5-member hindcasts using the prescribed 2007 sea ice, 
while the five grey vertical bars on its left are the envelopes of the 5-member hindcasts using prescribed, but 
“erroneous” or scrambled, sea ice extent from the five preceding years (2002 to 2006). From Orsolini, Senan, 
Benestad and Melsom, to be submitted. 
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Figure 10. December 2010 - February 2011 seasonal prediction by Atmospheric and 
Environmental Research. 

The accuracy of the seasonal prediction is demonstrated by comparing observed and predicted results. These 
images show: a) observed and b) predicted winter surface temperature anomalies for the Northern 
Hemisphere including the North America and Eurasia for December 2010- February 2011. Predicted 
temperatures were lower than normal for the mid-latitudes and higher than normal toward the Arctic. The 
model uses October Siberian snow cover and sea level pressure anomalies, as well as sea surface temperature 
anomalies in the equatorial Pacific in its winter forecast. October 2010 snow cover was observed to be above 
normal, which favors below normal temperatures for the Eastern US. 
 
See http://www.aer.com/science-research/climate-weather/climate-dynamics/seasonal-weather-forecasts. 
 



     
24

 
 
 
 
 
 

 
Figure 11. Evidence for decadal predictability of North Atlantic upper ocean heat content based 
on the successful prediction of the North Atlantic subpolar gyre warming in 1995/1996 with the 
DePreSys ensemble prediction system.  

Upper ocean (0-500m) temperature anomalies averaged over the North Atlantic subpolar gyre for a 
DePreSys hindcast started from June 1995 initial conditions is shown in red, which successfully captures the 
warming in the observations [black, taken from the Met Office ocean analysis (Smith and Murphy, 2007)]. 
All temperature anomalies are relative to a 1941-1996 climatology. From PhD thesis of Jon Robson, 
University of Reading, 2010. 
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