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1- Introduction

In chaotic systems... Ensemble: 20 simulations with different IC
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2- Budget Equation for Internal Variability of Potential Temperature

L,. Internal Variability Tendency
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3- Physical interpretations: physical processes responsible of Internal Variability in RCM simulations

Why does C contribute to the IV growth? Why does B, contribute to the IV growth ? Why is IV growth greatly reduced by Bv? Why is IV reduced by A,?
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4- Conclusion References:

We analysed the physical processes responsible for the maintenance and variations of internal variability (IV) in an ensemble of twenty simulations performed with the nested Canadian RCM (CRCM) for the summer 1993 season over ~ Lorenz, E. N. (1967), The nature and theory of the general circulation of the
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The most positive contribution term is C due mostly to the condensation and convection contributions to J' (diabatic heating rate). Radiation processes slightly contribute to increase IV in RCM simulations, whereas the vertical 10.1007/500382-010-0834-y

and horizontal diffusions act as destruction terms during the season. B, also contributes to the growth because the transport of heat by covariance of fluctuations is down-the gradient in the ensemble-mean state. Nikién;‘i‘a 0., 11{- Lapfisfe Jzzll)»dB“dget StUdiYCCif hits integn’;‘l Vi’iabﬂity iri
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The most negative contribution to the IV tendency is B, because the time-average of the covariance of fluctuations ({(¢.»;) ) and the gradient of the ensemble-mean potential temperature (5¢s)/3, ) are negative 1n the entire troposphere. e N

v N0/ \Y// P scale, Journal of Geophysical research, 116, D16112, doi:

These results reveal that warm fluctuations rise and cold fluctuations sink in perturbations from the ensemble-mean state in order to consume IV. Thus the energy conversions associated to IV perturbations appear to behave quite

similarly to those 1n weather systems, with fluctuation available potential energy being generated by condensation and convection processes (term C), and this energy being converted back to fluctuation kinetic energy [e.g., Lorenz, 19535,
1967]. Physically, Ah is a sink term because of its contribution to transport large IV value out of the regional domain by the horizontal ensemble-mean flow.

Our results indicate that RCM’s internal variability is a natural phenomenon issued from the chaotic nature of the atmosphere.
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