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|. Introduction

Motivation and objectives we study an infinitely fast bimolec-
ular chemical reaction in a two-dimensional closed Na@takes flow. The
reactants are initially segregated, separated by infingdignts and well mixed
in their respective domain. This research was motivatechbyneed to better
understand the effect of resolution in Climate-Chemistodels in the strato-
sphere ([1,2]). Particular attention is given to the effgicthe reactants’ diffu-
sionx (or equivalently to the Prandtl numbé&y = = since the viscosity will
be taken constant). We focus on:

- The length of the contact line between the reactants

- The gradients of the reactants along the contact line @iitiby distribution)

- The probability distribution and the ensemble averagehefreactants’ con-
centrations

Our objective is to relate them to the Lagrangian stretcpiaogerties (LSP) of
the chaotic trajectories of the flow.

We focus on the initial regime of the reaction characterizgd well defined
one dimensional contact line. The duration of this regime lsa roughly ap-
proximated by the mix-down time scale from the largest soékhe flow L to

the diffusive cutoff: 7,,;, ~ £ In Pe = £ In RePr, whereRe, Pe and Pr are

respectively the Reynolds number, the Peclet number anBriduedtl number.
T is the integral time scale of the flow

Infinitely fast chemistry we consider the bimolecular chemical
reactionA + B — (' in stoichiometric quantities. The field = C, — Cp,
defined as the difference between the reactants’ concemifaldsC 4, andCy

IS a passive tracer:

0
a—f +u-Vo = rV3, (1)

The reaction is instantaneousgt and B cannot coexist at the same location.
Denoting with an over-bar the space average over the domvaihave:

Ca(x,t) = o(x,t) andCp(x,t) =0 if ¢p(x,t) >0 2)
{ Cp(x,t) = —p(x,t) andCy(x,t) =0 if ¢(x,t) <0
Ca=Tp= 121 ©

If A andB are separated by a contact lide= {x|¢(x) = 0} of dimension
one and oriented in a counterclockwise direction such thextgloses reactant
A (domainD ), the time derivative of the reactants in an incompresslased

flow is:

A% .A@:1 M—K/ Vo - ndl, (4)

where A is the total area of the domain amda unit vector normal ta (t)
pointing outward fromD 4. We call—% the chemical speed.

Finite time Lyapunov exponents (FTLE) They are de-
fined as the rate of exponential increase of the distancedegithe trajectories
of two fluid parcels that are initially infinitely close. #i(¢) is the distance be-
tween two parcels that start atandx + 6ly, then the FTLE\(x, ¢) atx over

the time intervak is

1

1
A(x,t) = Zmax{ln o1

|01

where the maximum is calculated over all the possible cai@nrisy of 61y. The
corresponding) = ¢, (x,t) defines the orientation of a “singular vector” that
converges asymptotically in time toward the forward Lyapuexponent, whose
orientation isV . (x). The FTLE converges ta.,, the infinite time Lypunov
exponent who is independentxf([3]).

¥ (5)

We can calculate them in an incompressible flow using thecitglgradient
tensorS = Vu(X, t) along a trajectorX (x, ¢): d1is solution of2!—S(¢).61 = 0
and is given byl = Mol(t = 0) where the resolvent matrix! is solution of
—S(¢)M = 0. The finite time Lyapunov exponentt) is given by the largest
eigenvalue ofMTM]% with (cos 1, sin 1, ) the associated eigenvalue.

It can be shown with the incompressibility that the FTLE isoathe maximum
exponential growth rate of a wave numlkefor equivalently of a passive tracer
gradient in the absence of diffusion), solution%éﬁk S%(t).k = 0. Considering
the resolvent matriXN such thatk = Nk(t = 0), the finite time Lyapunov
exponent\(¢) is the largest eigenvalue @NTN]% with (—sin, cos,) the
associated eigenvalue.

|. Theory

Contact line lengthening An elementsly = |61y (cos o, sin ) of
the contact line at the initial time is advected at titneto an elemendl whose
squared norm is

161 = 5lo" M Mly = [81o|* [e* cos® (v — ) + e M sin® (v, — a)]  (6)

Noting that the angle: is random, we can show that the total ensemble average
length of the contact line is (brackets are for an ensemldesge):

T OO d’}/ .
= Ly — : 2 = gin® 7y,
(L)(t) =L / / dlP)\(t l)\/e It cos?y + e~ 2 gin? (7)
o Jo T

where we have introduced the probability density functjmoff) P, of the FTLE.

Gradients along the contact line we define the coordinate
corresponding to the co-moving frame with a Lagrangian glarajectoryX.
Assuming that the tracer varies only in the direction pedi&riar to the contact
line we write:

¢(x,t) = x(r,t) = X(k -1, 1) = X(1,1) (8)

wherek is a vector perpendicular to the contact line. Assuming allpsmooth
and derivable velocity field, we can show from (1) and (8) &g [4]):

dk | QT

+S'(t)k=0
gfz ()282~ 9)
2 =g k|" 25

We can solve this equation noting that it is ‘aheat equatioimtive rescaled time
O = f(f du |k(w)|>. The initial condition is2: (t = 0) = Apd(n) (infinite initial
gradient). We assume that the “singular vecl(@bs Y, siney ) is constant and

equal to the forward lyapunov vectaros ¥, ,sin W, ). We get the norm of the
advected gradien¥ ¢ | with the contact line:

V| = 22 TG 10

it & = T o
We introduce two equivalent timesandr:

o I f;tizt;du and7 = /0 gy (11)

The equivalent time measures the stretching time of a Lagrangian parcel in the
recent past. The pdf; (¢, g) of G along the contact line is:

[ [ QdiPga(t, g,1)\/ €t cos?y + e2l sin?

; (12)
[ [ LdiP\(t,1)\/ e cos? y + e 2l sin®

PG,E(ta g) —

where we have introduced the joint p&: \(¢,g,1) of G and . Pg(t,g) IS
asymptotically equivalent td; » - (, g) at large times:

fle%A(t,g,l)elt
[dIP\(t,)elt

Por(t,g) ~ Porolt,g) = (13)

whereP%?A is the joint pdf of - and)\.

Chemical speed The chemical speed can be written as the production
of the diffusion with the mean contact line length) and the mean gradient
along it(|Vor|):
dlgl, 24
) T mA

VE(L)(G) (14)

Reactants density function it is possible to show that we can
find e < 1 such that the pdPy of |¢| is:

VRN Serf Y (D) forg € [0, A1 — ). (15)

Py(9) = 1

T AA,

The termer £~ is the derivative of the inverse of the Gauss error functiten,
fined for areak as follows:z — \% fo‘” e~ dt. The denistyPy is proportional
to /k(L) because the area where the figlthkes non-trivial values (i.e signif-
icantly different from the initial valued,) is proportional to,/x(L): its length
is (L) while its width is controlled by diffusive processes. Figahe term(z)
depicts the effect of the mean gradient, with a decreaseegjddient along the
contact line explaining an increase in the probability oa#malues of|¢|.

McGill

11l. A two-dimensional Navier Stokes flow

The vorticity equation, integrated with the pseudo-spectral method%"fsyr u-Vw = F — Ryw + vV?w. F is aforcing term at wave number B, the Rayleigh friction and the viscosity. The equation is
integrated in a doubly periodic box w, | x [—7, 7| on a512 x 512 grid. The integral time scale of the flow = , /<f—2> will be used to normalize the time axis. The Reynolds numbef the order ofl0*.

Finite time Lyapunov exponents maps

Statistics of the Lagrangian stretching properties (LSP)

. Vorticity at t1=0 FTLE (or strain) at t/1=0 We defln£ (l t) (PA(t l)) —l_ I;ltt —l_ ( | Where . | | | | | | |
ijr(;)babilitydistrilbutior: ofthle Lyath:ovlexpolnentsk Prob:gilitydistlributic:nofthleinvelrsejf.;hjeiuivalenttimer Ae (t) IS Chosen to haVﬁlln)\ G (l t) — O Large
» — N g deviation theory predicts that, has a limit at in-
25 — i— finity and thatGG,. converges to the Cramer func- 0.08 i -
FTLE at t/=1 FTLE at t/=2 12:: : tIOﬂ ([5]). Wlth P)\(t, l> X eXp(—tGe(l, t)) We
- have fort < L (from (7)):
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Figure 2: Top: probability density of the Lya- I\Iloting that (&) is asymptotically equivalent to Figure 3: Function G.()\) at different times
| ounov exponents (left) and of the inverse of the {7/ (@ssuming that and\ become independent), 0.25 < t/T < 25. We note the asymmetry of
_ equivalent timer (right) for 0 < ¢ < 257. We It has a time limit at infinity and we should have, & and the faster convergence for large FTLE
Figure 1: FTLE maps at different times and note that the density of att = 0.257 is roughly for sufficiently large times,
plotted at the starting locations of the trajectories.  the density of the strain. Bottom: their joint den-
At the top are plotted the vorticity (left) and the sity att = 47 (left) andt = 257 (right). <d|</5|> ot maxy(A=Ge (A1) (17)
strain (right) at = 0. dt
The numerical simulations are performed for eight difféferandtl number$r = £ = 2/ for 0 < ¢ < 7 (Peclet number between* and10°). For each one we run an ensemble of 34 simulations integr#tie
vorticity and the passive tracer equations in the periodic lktach member is defined by Its initial condition on the flaken as the vorticity field every turnover time of a long tiraa of the flow. For each member,
we use the following initial condition on the traceftz, y,t = 0) = 2A4(H (z) — 1) for (z,y) € |-, 7]?,, where H is the Heaviside step function.
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Figure 5: Chemical speed, rescaled Ry, from the

function. Log Tog scale.

Figure 7:Comparison, in the limit of inifinite initial gra-
dients, between the pdf 6¢f = {47;_"6 |V ¢,| calculated from
the DNS and from LSP.

Figure 6: Pdf of G = ﬁ 'V¢,| calculated from the
DNS at different times and different Prandtl numbers.

V. Conclusions

For an infinitely fast chemical reaction in a chaotic two-dmsional Navier-Stokes flow, at small and intermediatesimar study based on a Lagrangian stretching theory approac
explains the lengthening of the contact line between thetaass, links the gradients of the reactants on this linaed_fagrangian stretching properties of the flow (specifydalithe
joint distribution of(\, 7, 7)) and explains the effect of diffusion on theses quantilieparticular, we have highlighted the importance of rarengs (large stretching) in the evolution
of the mean reactants concentrations. This paves the wag etvelopment of sub-grid parametrizations for fast cegnin turbulent and chaotic flows.

Open questions and future work (some in progress).
- Extension to fractal interfaces, to other initial conaiits, to finite chemistry.
- What mechanisms drive the time evolution of the pdApf and7?

DNS, and calculated using the LSP. We also plot the curve _ \\/hat is the dependence between and7?

corresponding to an exponential increase at the(xraps.
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