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IV. Numerical results
The numerical simulations are performed for eight different Prandtl numbersPr ≡ κ

ν
= 2i for 0 ≤ i ≤ 7 (Peclet number between104 and106). For each one we run an ensemble of 34 simulations integrating the

vorticity and the passive tracer equations in the periodic box. Each member is defined by its initial condition on the flow,taken as the vorticity field every turnover time of a long timerun of the flow. For each member,
we use the following initial condition on the tracer:φ(x, y, t = 0) = 2A0(H(x) − 1

2
) for (x, y) ∈ [−π, π]2, , where H is the Heaviside step function.

Open questions and future work (some in progress) .
- Extension to fractal interfaces, to other initial conditions, to finite chemistry.
- What mechanisms drive the time evolution of the pdf ofλ, τ andτ̃?
- What is the dependence betweenλ, τ andτ̃?

V. Conclusions
For an infinitely fast chemical reaction in a chaotic two-dimensional Navier-Stokes flow, at small and intermediate times, our study based on a Lagrangian stretching theory approach
explains the lengthening of the contact line between the reactants, links the gradients of the reactants on this line to the Lagrangian stretching properties of the flow (specifically to the
joint distribution of(λ, τ, τ̃ )) and explains the effect of diffusion on theses quantities.In particular, we have highlighted the importance of rare events (large stretching) in the evolution
of the mean reactants concentrations. This paves the way to the development of sub-grid parametrizations for fast chemistry in turbulent and chaotic flows.
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Figure 7:Comparison, in the limit of inifinite initial gra-
dients, between the pdf ofG ≡

√
πκ
A0

|∇φL| calculated from
the DNS and from LSP.

Gradients along the contact line pdf
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Figure 6: Pdf of G ≡
√
πκ
A0

|∇φL| calculated from the
DNS at different times and different Prandtl numbers.
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Figure 4:Ensemble average of the length of the contact
line. The dotted lines correspond to the DNS,〈L〉 andLE
are calculated using the FTLE pdf. The shifted line corre-
spond to an exponential increase at the rate0.027.
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Figure 5: Chemical speed, rescaled by
√
κ, from the

DNS, and calculated using the LSP. We also plot the curve
corresponding to an exponential increase at the rate0.027.

We defineGe(l, t) = − ln(Pλ(t,l))
t

+ ln t
2t

+ Ae(t)
t

, where
Ae(t) is chosen to haveminλGe(l, t) = 0. Large
deviation theory predicts thatAe has a limit at in-
finity and thatGe converges to the Cramer func-
tion ([5]). With Pλ(t, l) ∝ exp(−tGe(l, t)) we
have fort≪ T

4
(from (7)):

〈L〉 ∼ LE ≡ L0

∫ ∫
dγ
π
dlPλ(t, l)| cos γ|elt

∝ etmaxl(l−Ge(l,t))
(16)

The lengthening of the contact line is dominated
by rare events for times that are not too small.

From our simulationsmaxl(l − Ge(l, t)) saturates
at≈ 0.027.

Noting that 〈G〉 is asymptotically equivalent to
〈1
τ 〉 (assuming thatτ andλ become independent),

it has a time limit at infinity and we should have,
for sufficiently large times,

−〈d|φ|
dt

〉 ∝ etmaxλ(λ−Ge(λ,t)). (17)
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Figure 3: FunctionGe(λ) at different times
0.25 < t/T < 25. We note the asymmetry of
Ge and the faster convergence for large FTLE

Figure 2: Top: probability density of the Lya-
punov exponents (left) and of the inverse of the
equivalent timeτ (right) for 0 < t ≤ 25T . We
note that the density ofλ at t = 0.25T is roughly
the density of the strain. Bottom: their joint den-
sity att = 4T (left) andt = 25T (right).

Statistics of the Lagrangian stretching properties (LSP) .Finite time Lyapunov exponents maps

Figure 1: FTLE maps at different times and
plotted at the starting locations of the trajectories.
At the top are plotted the vorticity (left) and the
strain (right) att = 0.

III. A two-dimensional Navier Stokes flow

The vorticity equation, integrated with the pseudo-spectral method, is:∂ω
∂t

+ u · ∇ω = F − R0ω + ν∇2ω. F is a forcing term at wave number 3,R0 the Rayleigh friction andν the viscosity. The equation is

integrated in a doubly periodic box[−π, π] × [−π, π] on a512 × 512 grid. The integral time scale of the flowT ≡
√

2
〈ω2〉 will be used to normalize the time axis. The Reynolds number is of the order of104.

II. Theory

Contact line lengthening An elementδl0 = |δl0| (cosα, sinα) of
the contact line at the initial time is advected at timet into an elementδl whose
squared norm is

|δl|2 = δl0
T
M

T
Mδl0 = |δl0|2

[
e2λt cos2(ψ+ − α) + e−2λt sin2(ψ+ − α)

]
(6)

Noting that the angleα is random, we can show that the total ensemble average
length of the contact line is (brackets are for an ensemble average):

〈L〉(t) = L0

∫ π

0

∫ ∞

0

dγ

π
dlPλ(t, l)

√
e2lt cos2 γ + e−2lt sin2 γ, (7)

where we have introduced the probability density function (pdf)Pλ of the FTLE.

Gradients along the contact line We define the coordinater
corresponding to the co-moving frame with a Lagrangian parcel trajectoryX.
Assuming that the tracer varies only in the direction perpendicular to the contact
line we write:

φ(x, t) ≡ χ(r, t) = χ̃(k · r, t) ≡ χ̃(η, t) (8)

wherek is a vector perpendicular to the contact line. Assuming a locally smooth
and derivable velocity field, we can show from (1) and (8) (seee.g. [4]):

dk
dt + S

T (t).k = 0
∂χ̃
∂t

= κ |k|2 ∂2χ̃
∂η2

(9)

We can solve this equation noting that it is a heat equation with the rescaled time
Θ ≡

∫ t

0 du |k(u)|2. The initial condition is∂χ̃∂η (t = 0) = A0δ(η) (infinite initial
gradient). We assume that the “singular vector”(cosψ+, sinψ+) is constant and
equal to the forward lyapunov vector(cos Ψ+, sin Ψ+). We get the norm of the
advected gradient|∇φL| with the contact line:

|∇φL| = A0√
πκ
G

with G =
√

e2λt cos2(Ψ+−α)+e−2λt sin2(Ψ+−α)

τe2λt cos2(Ψ+−α)+τ̃ sin2(Ψ+−α)
.

(10)

We introduce two equivalent timesτ andτ̃ :

τ =

∫ t

0 e
2uλ(u)du

e2tλ(t)
andτ̃ =

∫ t

0

e−2uλ(u)du. (11)

The equivalent timeτ measures the stretching time of a Lagrangian parcel in the
recent past. The pdfPG,L(t, g) of G along the contact line is:

PG,L(t, g) =

∫ ∫
dγ
π dlPG,λ(t, g, l)

√
e2lt cos2 γ + e−2lt sin2 γ

∫ ∫
dγ
π dlPλ(t, l)

√
e2lt cos2 γ + e−2lt sin2 γ

, (12)

where we have introduced the joint pdfPG,λ(t, g, l) of G andλ. PG,L(t, g) is
asymptotically equivalent toPG,L,∞(t, g) at large times:

PG,L(t, g) ∼ PG,L,∞(t, g) =

∫
dlP 1√

τ
,λ(t, g, l)e

lt

∫
dlPλ(t, l)elt

, (13)

whereP 1√
τ
,λ is the joint pdf of 1√

τ
andλ.

Chemical speed The chemical speed can be written as the production
of the diffusion with the mean contact line length〈L〉 and the mean gradient
along it〈|∇φL|〉:

−〈d|φ|
dt

〉 =
2A0√
πA

√
κ〈L〉〈G〉 (14)

Reactants density function It is possible to show that we can
find ǫ≪ 1 such that the pdfPΦ of |φ| is:

PΦ(φ) =
4

AA0

√
κ〈L〉〈 1

G
〉erf−1′( φ

A0

)
for φ ∈ [0, A0(1 − ǫ)]. (15)

The termerf−1′ is the derivative of the inverse of the Gauss error function,de-
fined for a realx as follows:x 7−→ 2√

π

∫ x

0 e
−t2dt. The denistyPΦ is proportional

to
√
κ〈L〉 because the area where the fieldφ takes non-trivial values (i.e signif-

icantly different from the initial valueA0) is proportional to
√
κ〈L〉: its length

is 〈L〉 while its width is controlled by diffusive processes. Finally the term〈 1
G〉

depicts the effect of the mean gradient, with a decrease of the gradient along the
contact line explaining an increase in the probability of small values of|φ|.

I. Introduction

Motivation and objectives We study an infinitely fast bimolec-
ular chemical reaction in a two-dimensional closed Navier-Stokes flow. The
reactants are initially segregated, separated by infinite gradients and well mixed
in their respective domain. This research was motivated by the need to better
understand the effect of resolution in Climate-Chemistry models in the strato-
sphere ([1,2]). Particular attention is given to the effectof the reactants’ diffu-
sionκ (or equivalently to the Prandtl numberPr = ν

κ since the viscosityν will
be taken constant). We focus on:

- The length of the contact line between the reactants
- The gradients of the reactants along the contact line (probability distribution)
- The probability distribution and the ensemble average of the reactants’ con-
centrations

Our objective is to relate them to the Lagrangian stretchingproperties (LSP) of
the chaotic trajectories of the flow.

We focus on the initial regime of the reaction characterizedby a well defined
one dimensional contact line. The duration of this regime can be roughly ap-
proximated by the mix-down time scale from the largest scaleof the flowL to
the diffusive cutoff:Tmix ≈ T

2 lnPe = T
2 lnRePr, whereRe, Pe andPr are

respectively the Reynolds number, the Peclet number and thePrandtl number.
T is the integral time scale of the flow

Infinitely fast chemistry We consider the bimolecular chemical
reactionA + B −→ C in stoichiometric quantities. The fieldφ = CA − CB,
defined as the difference between the reactants’ concentration fieldsCA andCB
is a passive tracer:

∂φ

∂t
+ u · ∇φ = κ∇2φ, (1)

The reaction is instantaneous:A andB cannot coexist at the same location.
Denoting with an over-bar the space average over the domain,we have:

{
CA(x, t) = φ(x, t) andCB(x, t) = 0 if φ(x, t) > 0

CB(x, t) = −φ(x, t) andCA(x, t) = 0 if φ(x, t) < 0
(2)

CA = CB =
|φ|
2

(3)

If A andB are separated by a contact lineL = {x|φ(x) = 0} of dimension
one and oriented in a counterclockwise direction such that it encloses reactant
A (domainDA), the time derivative of the reactants in an incompressibleclosed
flow is:

AdCA
dt

= AdCB
dt

=
1

2
Ad|φ|
dt

= −κ
∫

L(t)

∇φ · ndl, (4)

whereA is the total area of the domain andn a unit vector normal toL(t)

pointing outward fromDA. We call−d|φ|
dt

the chemical speed.

Finite time Lyapunov exponents (FTLE) They are de-
fined as the rate of exponential increase of the distance between the trajectories
of two fluid parcels that are initially infinitely close. Ifδl(t) is the distance be-
tween two parcels that start atx andx + δl0, then the FTLEλ(x, t) at x over
the time intervalt is

λ(x, t) =
1

t
max
ψ

{
ln

|δl|
|δl0|

}
, (5)

where the maximum is calculated over all the possible orientationsψ of δl0. The
correspondingψ ≡ ψ+(x, t) defines the orientation of a “singular vector” that
converges asymptotically in time toward the forward Lyapunov exponent, whose
orientation isΨ+(x). The FTLE converges toλ∞, the infinite time Lypunov
exponent who is independent ofx ([3]).

We can calculate them in an incompressible flow using the velocity gradient
tensorS ≡ ∇u(X, t) along a trajectoryX(x, t): δl is solution ofdδldt−S(t).δl = 0

and is given byδl = Mδl(t = 0) where the resolvent matrixM is solution of
dM
dt

−S(t)M = 0. The finite time Lyapunov exponentλ(t) is given by the largest

eigenvalue of[MT
M]

1
2t with (cosψ+, sinψ+) the associated eigenvalue.

It can be shown with the incompressibility that the FTLE is also the maximum
exponential growth rate of a wave numberk (or equivalently of a passive tracer
gradient in the absence of diffusion), solution ofdk

dt
+ S

T (t).k = 0. Considering
the resolvent matrixN such thatk = Nk(t = 0), the finite time Lyapunov
exponentλ(t) is the largest eigenvalue of[NT

N]
1
2t with (− sinψ+, cosψ+) the

associated eigenvalue.
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