on the Bluefin Tuna Spawning Habitat in the Gulf of Mexico

Yanyun Liut4 (Yanyun.Liu@noaa.gov) , Sang-Ki Leel?, Barbara A. Muhling®:3, John T. Lamkin3, David B. Enfield!?
Gustavo J. Goni?, Mitchell A. Roffer* and Frank E. Muller-Karger»
1Univ. of Miami/CIMAS, AOML/NOAA, 3SSEFSC/NOAA, “ROFFS Inc., °*Univ. of South Florida

Introduction Cooling effect due to the reduced LC

The IPCC-AR4 climate models project that the upper ocean temperature In MICOM (EXP_HR): Surface Current Fig. 8 Applications of IPCC climate model results to the BFT habitat model
the Gulf of Mexico (GOM) may increase by ~2°C and the Atlantic (a)Late20C (b) Anomaly (Late 21C - Late 20C) | .

Meridional Overturning Circulation (AMOC) may slow down by about 25% o K - Fig. 3: (a) Long-term mean April May

during the 21st century (e.g., Schmittner et al. 2005). Both factors can have - - surface current in the late 20th

strong impacts on the Atlantic marine ecosystem, potentially resulting in
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substantial reduction of productivity in the GOM. 25N Y J

from EXP_HR. (b) Anomalous Late 20C
(1.e., late 21st century — late

: ) 20th century) surface current in
i~~~ < "Mt the GOM during AMJ obtained

Bluefin tuna (BFT) Is one such species that can be greatly affected by future
climate change. The spawning of BFT has been recorded predominantly in
the northern GOM from April to June (AMJ) with the optimal temperature of

24 - 27°C (Fig. 1). Adult BFTs are adversely affected by warm water and thus 15N | ; EXP R |
avoid warm features such as the Loop Current (LC). L L fom M. Mid 21C

Since the LC In the GOM 1is a part of the North Atlantic western boundary
currents system and is an important pathway of the AMOC, It Is expected
that the LC be reduced as the AMOC slows down in the 21st century.
However, the IPCC-AR4 climate models have typical spatial resolution of Mar April
~1°, which Is too coarse to resolve and estimate the changes in the strength,
position and eddy shedding characteristics of the LC and their effects on the
projected warming of the GOM.
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(Figure 2a). In particular, the
SST increase In the high-
resolution model (Figure 2c) Is

months of March, April, May and June. The probability of occurrence (%)
IS shown, based on output from the boosted classification tree model using
the mean temperature values from the IPCC climate models (Fig. 8) and
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