Southern hemisphere circulation shifts in a warming climate
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Separating forcings
using AM2 & CM?2

The Ferrel cell vs. Hadley cell shift ratio FC/HC ratio overview

Here we examine the FC/HC ratio as a function of timescale
and season, investigating the role of ocean coupling.
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DJF circulation changes

We calculate the eddy momentum flux convergence (EMFC)
after Chen & Held (2007), and discuss their proposed
mechanism whereby increased phase speeds are posited to
result in a poleward shift in wave activity.
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« The FH/HC ratio varies by forcing.
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Shading represents a histogram latitudes and slow phase speeds, and less at high latitudes.

Ferrel Perhaps this is why SST warming doesn't 'favor' the Ferrel
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 Scatter makes it difficult to say whether interannual ratios most
closely match changes from any particular forcing.

* Our results are similar to and extend those by Kang & Polvani
(2010) for our model. For example, we calculate slopes for both
hemispheres and for DJF (not shown). We find correlations above
0.6 for the FC/HC ratio during both seasons, and over both
hemispheres.

« The Ferrel cell generally shifts more than the Hadley cell.

« We find no definitive FC/HC shift ratio, even within one
model.

« The FC/HC shift ratio for different forcings, seasons, and
time-scales may yield insights into underlying mechanisms.

« The Chen and Held (2007) phase speed mechanism may
explain some of the differences between season and forcing.

« Poleward shifts due to SST warming consistently
overpower equatorward shifts due to O; recovery.

« The Ferrel cell shifts more strongly than the Hadley cell
almost all year for all forcings.

» This strong SST effect is in contrast to Kang et al. (2011),
who show relatively little dependence of circulation shifts

on SSTs.
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