
The Gaussian FDT 
A conventional simplifying assumption is that the system is Gaussian,  i.e.  

implying that 

where C(0) is the covariance matrix and C(τ) is the lag covariance matrix. In this estimate 
for L all required knowledge of ρ(X) is captured by C(0). 

Stratosphere-troposphere coupling: use of the Fluctuation-Dissipation Theorem as a quantifier 
of tropospheric response 
Fenwick Cooper(1,2) and Peter Haynes(2) (phh@damtp.cam.ac.uk, http://www.damtp.cam.ac.uk/user/phh/) 

(1)Department of Mathematics, University College London, (2) Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

Introduction 
Some aspects of the coupling between stratosphere and troposphere can be understood 
as tropospheric response to stratospheric forcing, with the tropospheric circulation acting, 
through the coupled effects of eddies and mean flow, as an amplifier. The Fluctuation-
Dissipation Theorem (FDT) is one theoretical tool available to predict the tropospheric 
response to forcing. The FDT provides an estimate of the linear operator relating forcing 
to response, based only on the statistics of the unforced tropospheric circulation, 
calculated from a suitable time series. The simplest prediction of the FDT, already 
exploited in the context of response to stratospheric forcing, is that response to forcing 
will be proportional to the longest correlation timescale in the unforced circulation. 
Potentially the FDT can provide more precise information on the structure and magnitude 
of the response to an arbitrary forcing. However the usefulness is limited by (a) sampling 
issues (i.e. the accuracy of the prediction is limited by the length of the time series of the 
unforced circulation) and (b) the Gaussianity assumption in the traditional form of the 
FDT. This poster provides quantitative analysis of (a) and presents a non-Gaussian 
extension of the traditional FDT -- we refer to the extension as a 'non-parametric FDT’. 
The usefulness of the non-Gaussian FDT as a predictor of changes in the tropospheric 
circulation is currently being explored. 

The Fluctuation-Dissipation Theorem 
Consider a dynamical system described by a state vector X and governed by a set of 
evolution equations that give dX/dt in terms of X. The dynamics are assumed to be 
stochastic either because of deterministic chaos or because of the inclusion of explicit 
stochastic forcing terms. In equilibrium the system has a smooth probability density 
function ρ(X). A steady forcing δF is added to the right-hand sides of the equations for dX/
dt. A measure of the response is the change < δX > in the mean value of X, which is 
predicted by a linear operator L acting on δF. 

The Fluctuation-Dissipation Theorem (FDT) predicts the operator L using information 
only about the equilibrium state. A general statement of the FDT is  

To evaluate the above expression for L requires knowledge of (i.e. estimation of) the 
equilibrium probability density ρ(X). 

Implementation of the Gaussian FDT (GFDT) 
The expression (3) has to be estimated from ‘data’ on the dynamical system of interest. 
Two important considerations are (a) the length of the dataset required to make a robust 
estimate of the lagged covariance C(τ)  for each τ and (b) estimation of the infinite 
integral, e.g. by truncating at some finite upper limit T. Any test of the Gaussian FDT must 
take these points into account. Useful insight can be gained by considering a very simple 
model. The results below are for a linear model with 2 degrees of freedom forced by 
white noise. 
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Figure 1: Response (4 elements of matrix L) to forcing of a linear model estimated using Gaussian FDT 
showing dependence on upper limit T. The decay time for the autocorrelation is about 16. The estimate is 
constructed from a simulation of length 105. Left panel: Mean estimate from 103 simulations. Dashed lines are 
the analytically calculated response.  Right panel: Standard deviation of estimated response. [Note that the 
uncertainty of the estimate increases with T , also that standard deviation will be 10 times greater for a 
simulation of length 103.] 

Application of the GFDT to an atmospheric model 
The expression (3) can also be used to estimate L for a quasi-realistic atmospheric model. 
Results are shown here for a simple ‘dynamics-only’ general circulation model (T30 
resolution with 20 levels). The response of the zonal mean velocity  to a zonal symmetric 
momentum forcing is considered. The underlying dynamical system is taken to be an 
evolution equation for the zonal mean velocity field. This is a significant reduction from the 
full dynamical system defined by the model since (i) the zonal mean is taken and (ii) the 
full set of zonal mean dynamical fields is reduced to zonal velocity only (justified by a 
balance assumption). (ii) requires a suitable modification of the imposed momentum 
forcing (through solution of an ‘Eliassen problem’ (see Ring and Plumb 2008 JAS). The 
large dimension of the state space makes it useful to project the response onto some 
chosen basis function, in this case chosen to be the leading EOF.  Important questions 
include possible choices for T and for truncation of the representation of the forcing in 
terms of EOFs and the correct formulation of the Eliassen problem. 

Figure 2: Predicted response in EOF1 of zonal wind to localised momentum forcing in T30L20 model. 
Equilibrium simulation is 106 days. Left panel: Predicted response as function of upper limit T including all EOFs 
in forcing. Solid curve is mean of prediction made using 10 individual segments each of length 105. Dashed 
curves indicate (using standard deviation) uncertainty of that set of predictions. Dot-dash curve is prediction 
made using full 106 days of simulation. Horizontal lines show simulated response (with uncertainty estimate). 
Right panel: variation of predicted response with EOF truncation applied to forcing. Grey curves show 10 
predictions from individual segments, solid curve is mean and dashed curves show uncertainty.  Red curve 
solves Eliassen problem on resting rather than ‘climatological’ state. [As in Figure 1 there is optimal range of T 
with large T  implyng large uncertainty As more EOFs are included uncertainty increases. Within uncertainty 
there is systematic difference between predicted and simulated response. Overall conclusion is that GFDT 
makes significant quantitative errors (> 30% in this case). ] 

A non-Gaussian (‘nonparametric’) FDT 
The expression (2) can be estimated using elementary methods of nonparametric 
statistics, estimating ρ(X) from data X1, X2, …., Xn on the equilibrium system by 

where N(X; Xi,h) is a Gaussian centred at Xi with standard deviation h. The resulting 
expression for L depends on h and there must be a range of h for which the prediction is 
insensitive to the actual value of h and bias and uncertainty are both small.  

Figure 3: Test of non-parametric FDT vs GFDT 
for a simple 1-d nonlinear stochastic system.  

where  ξ is white noise with unit variance. The 
horizontal lines show the simulated response 
(with uncertainty). The dash-dot lines show the 
GFDT estimate for response as a function of the 
upper limit T of the integral. The dots show the 
non-parametric estimate for different values of h 
with the dashed lines indicating uncertainty.  
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Synopsis 
•  Stratosphere-troposphere coupling involves strong two-way interactions between waves and 
mean flow in the troposphere. Conventional dynamical descriptions (e.g. in terms of EP 
fluxes) tend to be ‘descriptive’ rather than ‘predictive’. 
• The FDT offers an alternative approach to quantifying tropospheric response to stratospheric 
(or other) forcing. The operator predicting response in terms of perturbation can be estimated 
in terms of data on fluctuations in the unperturbed system. 
• Estimates are fundamentally statistical and due attention needs to be paid to bias and to 
uncertainty. Many previous studies have not given explicit information on these.  
• Assessment of the Gaussian FDT suggests that it is not an accurate estimator of response 
to forcing for a simple atmospheric general circulation model. This assessment takes proper 
account of uncertainty and therefore suggests that the Gaussianity assumption is inadequate.  
• A non-Gaussian (‘nonparametric’) FDT can be formulated and has been tested on low 
dimensional systems (Cooper and Haynes 2011 JAS). Work is ongoing to extend to more 
realistic systems.  


