The chemical sensitivity of stratospheric ozone to nitrous oxide and methane

Laura Revell^{1,2}, Greg Bodeker³, Petra Huck³, Dan Smale¹ and Bryce Williamson²

What we did

Eight simulations for the period 2015-2100 were performed using the chemistry-climate model Niwa-SOCOL (Schraner et al., 2008; Morgenstern et al., 2010). Boundary conditions generally followed the IPCC SRES A1B scenario for greenhouse gases (Nakicenovic *et al.*, 2001), but for four simulations, the prescribed nitrous oxide (N_2O) concentrations were replaced with concentrations consistent with N₂O emissions from each of the four representative concentration pathway (RCP) emissions scenarios (1a) (Meinshausen *et al.*, 2011). For the other four simulations, the methane (CH_4) concentrations were replaced with those consistent with CH_{4} emissions from each of the four RCP emissions scenarios (1b). For each simulation, the contributions of 15 catalytic chemical cycles to ozone destruction (similar to Lee *et al.*, 2002), including three nitrogen cycles and five hydrogen cycles, were accumulated into daily means within each model grid cell.

Why we did it

 N_2O and CH_4 are the two primary anthropogenic greenhouse gases controlled under the Kyoto Protocol after CO_2 , and cause ozone depletion when they are converted to active nitrogen oxides (NO_{y})

Dominant NO_x- and HO_x-catalyzed ozonedepleting cycles

$NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O \rightarrow NO + O_2$	OH + HO ₂ +

Rate-limiting reactions in bold

and active hydrogen oxides (HO_x), respectively. Because projected increases in N_2O and CH₄ emissions through the 21st century are expected to lead to changes in ozone, the results from this study provide insight into the effects of different greenhouse gas emission mitigation strategies on ozone.

cooling slowing the gas-phase ozone loss cycles, and decreasing concentrations of active chlorine and bromine, which deplete ozone (WMO, 2011).

1. National Institute of Water and Atmospheric Research, New Zealand. Contact: I.revell@niwa.co.nz; 2. Department of Chemistry, The University of Canterbury, New Zealand; 3. Bodeker Scientific, New Zealand.

> N_2O and CH_4 surface concentrations used in the model simulations. Simulation RCP3-PD N₂O refers to the simulation in which the SRES A1B scenario for N₂O was replaced by the RCP3-PD scenario for N_2O_7 and so forth.

> > $O_3 \rightarrow HO_2 + O_2$ $- 0 \rightarrow OH + O_2$ $0 \rightarrow 20_{2}$

depleting NO_x cycles (4). $^{3}/S$ 2.95 2.90 2.80 2.75 RCP6 N₂O 2.70 2030 simulation RCP3-PD N_2O . References

In all simulations, tropical lower stratospheric ozone decreases and upper stratospheric ozone increases over the 21st century. However, relative to simulation RCP3-PD N_2O (low N_2O emissions), stratospheric ozone in simulation RCP8.5 N₂O (high N₂O emissions) increases up to 7% less everywhere except for in the tropical lower stratosphere, where it decreases as much as 5% less, likely due to an increase in the rate of NO_x-induced ozone production $(NO_2+hv \rightarrow NO+O \text{ followed by } O+O_2+M \rightarrow O_3+M).$

Global area-weighted mean rate of NO₂+O, the dominant NO_x cycle in the stratosphere, for the four N_2O sensitivity simulations at 5 hPa. By the end of the 21st century, NO₂+O is almost 20% faster in simulation RCP8.5 N₂O compared with

- Fleming et al. (2011), Atmos. Chem. Phys., 11.
- Lee et al. (2002), J. Geophys. Res., 107.
- Meinshausen *et al.* (2011), Climatic Change (Special Issue on RCPs).
- Morgenstern *et al.* (2010), J. Geophys. Res., 115.
- Nakicenovic *et al.* (2001), IPCC Special Report on Emissions Scenarios.
- Schraner et al. (2008), Atmos. Chem. Phys., 8.
- WMO (2011), Scientific Assessment of Ozone Depletion: 2010

What do we see? – CH₄ simulations

- RCP3-PD CH_4 (low CH_4 emissions).

Contributions of 15 chemical cycles to the global rate of ozone destruction for the CH₄ sensitivity simulations. Plots are for the upper stratosphere (1 hPa), where the HO_x cycles are fast.

Conclusions

Our results indicate that the sensitivity of stratospheric ozone is such that increasing N₂O emissions will negatively impact ozone recovery in the 21st century via active nitrogen chemistry, while increasing CH_4 emissions will increase the total ozone column overall, but lead to global ozone depletion in the upper stratosphere.

Taihoro Nukurangi

Simulations with greater CH_{4} emissions lead to a greater increase in column ozone (2); the increase in column ozone over the 21st century is four times greater for simulation RCP8.5 CH_4 (high CH_4 emissions) than for simulation

In simulation RCP8.5 CH_{4} relative to simulation RCP3-PD CH_{4} , global upper stratospheric ozone decreases as much as 7% (5) due to an increased rate of the ozone-depleting HO_x cycles (6), but increases up to 9% elsewhere, particularly in the polar middle stratosphere and tropical lower stratosphere (5).

 CH_{4} -induced increases in ozone occur due to: a) NO_x-assisted ozone production (via HO₂+NO \rightarrow NO₂+OH then NO₂+hv \rightarrow NO+O and O+O₂+M \rightarrow O₃+M) in the lower stratosphere and troposphere; b) Decreasing concentrations of active chlorine, and thus decreasing importance of chlorine-catalyzed ozone loss cycles, via the reaction $CH_4+CI \rightarrow CH_3+HCI$ (6); c) Slower ozone loss rates, due to increased H₂O-induced cooling of the atmosphere (Fleming *et al.*, 2011).

As for Figure (**3**), calculated for simulation RCP8.5 CH₄ (high CH₄ **o** emissions) and simulation RCP3-PD CH₄ **-4** (low CH₄ **-6** emissions).