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The return of stratospheric ozone to 1980 levels is projected to occur earlier in northern mid-latitudes than in southern g 0 F—— e — A
mid-latitudes by many CCMs (WMO, 2010). These hemispheric differences are thought to be caused by different s .| Mt AN 1Y
changes in transport in the two hemispheres. In this study, two CCMs are used: NIWA-Socol and E39CA. While the NIWA- S |
Socol model does project different dates of return to 1980 values in the mid-latitudes of the two hemispheres, in E39CA -2100 ' ' ' ' ' ' | |
the return dates are rather similar. 5L EacA | | - 45-60N -
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What is the cause for the earlier return of stratospheric ozone to 1980 levels in the NH in NIWA-Socol, and % 5 [ A N v
why does E39CA not show the hemispheric difference in the return dates? B "‘;wj\\ - A ...1.ﬁ.-f-.h.;-j'r...*n,}*""’*'f'h' wyilkll
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Right: Timeseries of annual mean partial ozone column (100 to 10 hPa) anomalies § 10 F N
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relative to 1980, averaged over 45-60N (black) and 45-60S (green).
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2. METHOD: Attribution of ozone changes (ror details see Garny et al., 2011, GMD)

1.) Determination of tendencies due to transport and due to 2.) Attribution of year-to-year ozone changes:
chemistry: Combining Equ. 1 for two periods pl and p2 (here pl:mean 1960-69, p2: individual year) yields:
Production and destruction
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3.) Apply linear regression to time series (including Trend + Cly + (QBO+Solar) )
3. RESULTS
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Modification of return date by transport changes
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Regression coefficients of the fits of the partial column ozone time series at each latitude, _ , . ,
showing the response to Cly changes and the trend (response to GHG changes). The error As on the left but for NIWA-Socol. The differences in CIy-coeff|.C|ents betwegn Niwa-Socol
bars are the 10 uncertainty on the coefficients. Cly increases cause ozone decreases, and E39CA are due to the absence of the layer above 10 hPa Iln E39CA. While trk]\ere |
which are largely due to chemistry (blue), with some modifications by transport (red). appears to be a negative trend due to transport in NIWA-S_oco as in E39CA in the tropics,
There is a negative ozone trend in the tropics and positive in mid-latitudes, in large parts the influence of transport on ozone trends is positive only in the northern mid-latitudes in
caused by transport changes. NIWA-Socol.
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4. CONCLUSIONS

Mid-latitude ozone return dates are affected by transport changes. Return dates are generally earlier compared to the case of chemistry changes only. In Niwa-Socol, the
hemispheric differences in transport changes cause the hemispheric differences in return dates. In E39CA, transport effects on ozone are about equally strong in both
hemispheres, leading to small hemispheric differences in return dates.

The hemispheric and inter-model differences in transport effects are associated with differences in the residual circulation. In E39CA, ozone trends are affected by
transport changes in a similar magnitude as in NIWA-Socol despite the shallow circulation changes. However, E39CA lacks hemispheric differences in the residual
circulation trends which results in the absence of hemispheric differences in return dates. We speculate that the deficit of more pronounced circulation changes in
the NH in E39CA result from an improper gravity wave drag scheme.
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