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Abstract  
To understand how greenhouse gas (GHG) emissions may affect future stratospheric 
ozone, 21st century projections from four chemistry-climate models are examined for 
their dependence on six different GHG scenarios. Compared to higher GHG emissions, 
lower emissions result in smaller increases in tropical upwelling with resultant smaller 
reductions in ozone in the tropical lower stratosphere and less severe stratospheric 
cooling with resultant smaller increases in upper stratospheric ozone globally. Increases in 
reactive nitrogen and hydrogen that lead to additional chemical ozone destruction mainly 
play a role in scenarios with higher GHG emissions. Differences among the six GHG 
scenarios are found to be largest over northern midlatitudes (~20 DU by 2100) and in the 
Arctic (~40 DU by 2100) with divergence mainly in the second half of the 21st century. 
The results suggest that effects of GHG emissions on future stratospheric ozone should 
be considered in climate change mitigation policy and ozone projections should be 
assessed under more than a single GHG scenario. 
We also show results from the AC&C / SPARC ozone database that was used as forcing in 
a subset of CMIP5 models without interactive chemistry. We are planning to extend this 
study to include CMIP5 model simulations with interactive stratospheric chemistry and to 
compare them to the AC&C / SPARC ozone database and other results.
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 A multiple linear regression analysis of SAGE I+II satellite 
observations and polar ozonesonde measurements is 
used for the stratospheric dataset during 1979 to 2005. 
The regression includes terms representing equivalent 
effective stratospheric chlorine (EESC) and the 11-year 
solar cycle variability. The EESC regression coefficients 
are used to extrapolate that data back in time, and form 
a stratospheric ozone time series backward to cover the 
entire historical time period 1850-2009. 

 The stratospheric ozone projections are taken from the 
future reference simulations (REF-B2) of the 13 CCMs 
that performed a future simulation until 2100 under the 
SRES A1B GHG scenario and the A1 adjusted halogen 
scenario in CCMVal-2 (SPARC CCMVal, 2010). In the 
stratosphere, the multi-model mean of the REF-B2 
simulations is used in all RCP scenarios.

.

 Tropospheric data are derived from the chemistry-climate 
models Community Atmosphere Model (CAM) version 3.5 
and the NASA-GISS PUCCINI model (past) and from CAM3.5 
in the future. 

 Both models simulate tropospheric and stratospheric 
chemistry with feedback to the radiation and were driven by 
the recently available historical (1850-2000) emissions 
succinctly described in Lamarque et al. (ACP, 2010)..
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Tropics: larger ozone decrease in the 2nd 
half of the 21st century in the simulations 

with higher GHG scenarios. 

Midlatitudes: Larger differences in the 
northern hemisphere (~15 DU in 2100), small 

impact on ozone return dates.

Polar Regions: large differences in the 
Arctic (~ 40 DU in 2100), but small impact on 

ozone return dates.
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Ozone decrease to values lower 
than in 1980 due to climate 

change; nearly no impact of ESC. 
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Owing to the disappearance of the ozone hole in the 1st half 
of 21st century:
 Deceleration poleward side of jet in multi-CCM mean.
 Opposite response in mean of IPCC AR4 simulations.
 Importance of ozone can be seen by comparing AR4 models 
with & without ozone recovery.

 Other impacts of the ozone hole on surface climate have 
been investigated but have yet to be fully quantified (e.g. 
observed increases in sea-ice area averaged around 
Antarctica; decreases of carbon uptake over the Southern 
Ocean.)

AC&C/SPARC ozone database for CMIP5 models without interactive chemistry
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Large differences in 
tropospheric column ozone 
among the four RCPs are 
likely due the different CH4

mixing ratios.
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