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INTRODUCTION

Atlantic Multi-decadal Variability (AMV), also known as the Atlantic Multi-
decadal Oscillation (AMO), is characterized by a sharp rise and fall of the North
Atlantic basin-wide sea surface temperatures (SST) on multi-decadal time
scales. Widespread consequences of these rapid temperature swings are noted
by many previous studies, such as the drying of Sahel in the 1960-70s and
change in the frequency and intensity of Atlantic hurricanes. The central
question is whether these observed climate fluctuations are indeed a
consequence of the AMV. We address this issue by using the CMIP3 simulations
for the 20t 215t, and pre-industrial simulations with 23 models, and 12 CMIP5
models for the 20t Century. While models tend to produce AMV of shorter
time scales (20-30 years) than observations, the spatial structure of the pattern
and its impacts on precipitation are rather robust in models and observations.
In addition, the CMIP5 models tend to agree more with observations than that
in CMIP3. It confirms the strong impacts of AMV on Sahel rainfall and provides
a clear physical mechanism for its impact (northward shifted Atlantic ITCZ). The
main differences between CMIP3 and CMIP5 are in the tropical Pacific SST
anomalies associated with AMV. The less robust climate impacts over North
America and Indian monsoon region tend to be better defined in CMIP5 models
due to the better representation of the tropical Pacific SST anomalies.

AMO definition in CMIP3 20t and 21t Century Simulations
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Annual mean global surface temperature regression onto the AMV indices for (a) observations,
(b) 20t" Century, (¢) 21st Century, and (d) Preindustrial CMIP3 model simulations. (e)-(h) same as
(a)-(d), but for precipitation. Stippling in (a) and (e) indicates 95% confidence level based on
Monte Carlo test, in (b), (¢), (f), and (g) indicates 18 out of 23 models showing the same sign
regression coefficients, in (d) and (h) indicates 16 out of 20 models showing the same sign
regression coefficients. Contours in right panels are for climatological precipitation contoured at
2 mm/day intervals.
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temperature regressions (top) and temporal
projections of the North Atlantic SST onto the S/N
PC1 for 13 models.
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Left: Annual mean multi-model average regression of global surface temperature,
precipitation, and sea level pressure onto the AMO time series. Stippling indicates at least 10
out of 12 models showing the same sign. Right: same as left, but for the forced regression.

Comparison between Forced and Natural North Atlantic SST variability:

* Distinctive SST pattern over the North Atlantic - warmer North Atlantic than South Atlantic
in AMV+ phase and opposite for forced component.

* Extremely dry tropical North Atlantic and to some extent, the Sahel, in forced precip
versus wetter condition over these regions in AMV+.

* Southwest North America and Northeast South America getting dryer in AMV+ and forced

precip.

Subtropical (0-30N) AMV
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We first computed the subpolar (30N-60N) and subtropical (0-30N) SST indices in the same
way as the AMV index. Then regress surface temperature and precipitation onto those indices.
Stippling regions indicate 10 out of 12 models showing the same sign regression.

SUMMARY

In general, the AMV patterns are similar in CMIP3 and CMIP5 in both spatial
structures and temporal scales.

The wetting trend over Sahel and drying over North America during AMV+ are
enhanced in CMIP5. The Indian monsoon also tend to be stronger during AMV+ in
CMIPs5, closer to observations.

Differences between CMIP3 and CMIP5 may be due to the reduced eastern tropical
Pacific SST warming associated with AMV+ in CMIP5 compared to CMIP3 —again
closer to that in observations. The reason for this improvement is not clear.

Both the subtropical and subpolar components of AMV contribute to the
precipitation anomalies. The CMIP5 models tend to have a weaker subpolar SST
impacts compared to that in observations.

Depending on the phases of AMV, some regions may experience aggravated effect
of global climate change, such as the drying of Sahel during AMV- and the drying of
Southwest North America and Northeast South America during AMV+.

Seasonal AMV Regression in CMIP5
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These regression patterns show the seasonal cycle of the AMV and associated precipitation and sea level
pressure anomalies. The Sahel rainfall anomalies and the Indian monsoon anomalies are mainly in the
summer season, while the North and South American drying during AMV+ occurs in both winter and
summer. There is a strong negative NAO and reduced Atlantic storm track rainfall associated with AMV+
during winter. (Stippling indicates 10 out of 12 models showing the same sign regression.)



