
“Observations“: monthly averages, on a 2.5°x2.5° horizontal grid
 ERA-Interim (1989-2010): vertical pressure velocity ω(p)

 GPCP Precipitation version 2.1 (1979-2009) .

 SRB release 3.0 (1983-2007): clear- and total-sky radiative flux

 Observed TOA SW and LW fluxes;

 Parameterized Surface SW and LW fluxes

 CALIPSO-GOCCP Dataset (2006-2010 - Chepfer et al. 2010)

 Low-, mid- and high-level and total cloud cover, as well as vertical profiles of cloud cover

CMIP3/CMIP5 Models: monthly averages, interpolated on the same grid

 CMIP3: 20c3m experiment (1971-2000), 10 models.

 CMIP5: historical experiment (1976-2005), 5 models + AMIP experiment for 2 models.
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 Clouds control both the distribution and intensity of diabatic heating sources in
the atmosphere (e.g., convection, radiation).

 In turn, these heating sources strongly interact with atmospheric dynamics and
determine the spatial structures and temporal variability of the large-scale
atmospheric circulation simulated by climate models.

 Characterization and understanding of relationships between cloud properties,
tropospheric radiative heating and local/large-scale atmospheric circulations and
climate variability should provide guidance for future GCMs improvements.

Objectives: elaborate a framework to diagnose GCM biases in their representation
of tropospheric radiative heating and its relationship with cloud properties and local
dynamics.

 Principal Component Analysis (PCA) of monthly ω(p) over the global
tropics (30°S-30°N, 180°W-180°E), as in Yuan and Hartmann (2008).

 Composites in the PC1/PC2 domain
of various variables, to relate the ω
vertical structure to convection,
radiative heating, clouds…
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 ω monthly vertical structure is very
well represented by its projection on the
above EOF1/EOF2 (more than 90% of
explained variance).

 The vertical position of EOF2 min/max
clearly depends on the vertical
resolution, especially in the low levels.

 Different structure of convective
regimes between the western and
eastern Pacific (top- vs. bottom-heavy)
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 Composites in the PC1/PC2 domain (only for the global tropical ocean):

Contours: PDF of the composite. one contour every 0.4% from 0.2%

 Very consistent relationships between ω vertical structure,
cloud cover and ATM radiative fluxes (independant datasets!).

 For some parameters, strong dependency on PC2 (δω): cloud
cover, ATM LW CRF, even precipitation.

Relevant to use PC1/PC2 to define dynamical regimes

 At 1st order, the ATM LW CRF controls the ATM Net CRF
(especially in convective regimes).
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 PCA of ω(p) is performed for each model (see also section 3): EOF1 and EOF2 are
very similar (models do capture the vertical structure of ω), but:

 about 2/3 of the models clearly overestimate the variance explained by EOF1 and
underestimates that of EOF2, e.g. not enough variability in the ω vertical structure;

 some models represent a maximum of ω(p), which is two high (300 hPa vs 400 hPa).

 For better intercomparison, ω(p) of each model is projected on ERAI EOF1/EOF2
and composites are done with these projected PC1/PC2.
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 Overestimate of top- vs bottom-heavy ascent
regime occurrence probability.
 Large spread in simulated ATM LW CRF.
 Systematic biases:
 overestimate of precipitation in bottom-heavy
ascent regime and underestimate in “stratiform”
regimes (PC1~0 and PC2<0).

Organised convection? Precipitation efficiency?
Precipitation evaporation?
 Positive bias in top-heavy ascent regime in LW
clear-sky radiative fluxes.

 Using COSP outputs, links between CRF and cloud
biases can be highlighted.
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 Conclusion:
 The use of PC1/PC2 to define dynamical regimes is relevant to better
document:

(i) relationships between local dynamics, atmospheric radiative heating and cloud
properties;

(ii) some of (systematic) biases of climate models.
 Future work:

 Continue to use COSP outputs of CMIP5-EUCLISPE models to better relate the
diagnosed biases in the atmopheric CRF to the cloud cover and properties
 Investigate how biases in atmospheric CRF can explain some other large-scale
dynamic biases in climate models, e.g. Pacific Walker circulation, trade winds.
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