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On the relationship between cloud vertical structure

and the large-scale tropical circulation:

observational analysis and evaluation of climate models

Romain Roehrig!-?2 and Sandrine Bony!

1. Introduction

» Clouds control both the distribution and intensity of diabatic heating sources in
the atmosphere (e.g., convection, radiation).

» In turn, these heating sources strongly interact with atmospheric dynamics and
determine the spatial structures and temporal variability of the large-scale
atmospheric circulation simulated by climate models.

» Characterization and understanding of relationships between cloud properties,
tropospheric radiative heating and local/large-scale atmospheric circulations and
climate variability should provide guidance for future GCMs improvements.

Objectives: elaborate a framework to diagnose GCM biases in their representation
of tropospheric radiative heating and its relationship with cloud properties and local
dynamics.

2. Datasets

"Observations": monthly averages, on a 2.5°x2.5° horizontal grid
» ERA-Interim (1989-2010): vertical pressure velocity w(p)
» GPCP Precipitation version 2.1 (1979-2009) .
> SRB release 3.0 (1983-2007): clear- and total-sky radiative flux

» Observed TOA SW and LW fluxes; Atmospheric (ATM)
radiative flux divergence

» Parameterized Surface SW and LW fluxes
» CALIPSO-GOCCP Dataset (2006-2010 - Chepfer et al. 2010)

= Low-, mid- and high-level and total cloud cover, as well as vertical profiles of cloud cover

CMIP3/CMIP5 Models: monthly averages, interpolated on the same grid

» CMIP3: 20c3m experiment (1971-2000), 10 models.
» CMIP5: historical experiment (1976-2005), 5 models + AMIP experiment for 2 models.

4. Observational Analysis

> Composﬁres in ’rhe PCI/PCZ domain (only for the global tropical ocean):
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: Contours: PDF of the composite. one contour every 0.4% from 0.2%
Mid-level cloud Cover <

50 between w vertical structure,
il cloud cover and ATM radiative fluxes (independant datasets!).
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> For some parameters, . cloud
cover, ATM LW CRF, even precipitation.

Relevant to use PC1/PC2 to define dynamical regimes
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6. Conclusion and Perspectives

> Conclusion:

= The use of PC1/PC2 to define dynamical regimes is relevant to better
document:

(i) relationships between local dynamics, atmospheric radiative heating and cloud

properties;
(ii) some of (systematic) biases of climate models.
> Future work:

= Continue to use COSP outputs of CMIP5-EUCLISPE models to better relate the
diagnosed biases in the atmopheric CRF to the cloud cover and properties

. Inves’n% ate how biases in atmospheric CRF can explain some other large-scale
dynamic biases in climate models, e.g. Pacific Walker circulation, trade winds.
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3. Decomposition of Vertical Velocit

» Principal Component Analysis (PCA) of monthly w(p) over the global
tropics (30°S-30°N, 180°W-180°E), as in Yuan and Hartmann (2008).
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5. Application to CMIP3/CMIP5 models

» PCA of w(p) is performed for each model (see also section 3): EOF1 and EOF2 are
very similar (models do capture the vertical structure of w), but:

" about 2/3 of the models clearly overestimate the variance explained by EOF1 and
underestimates that of EOF2, e.g. not enough variability in the w vertical structure;

= some models represent a maximum of w(p), which is two high (300 hPa vs 400 hPa).

> For better intercomparison, w(p) of each model is projected on ERAT EOF1/EOF2
and composites are done with these projected PC1/PC2.
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