

CLIMATE CONTROLS OF TROPICAL-EXTRATROPICAL

CLOUD BANDS OVER SOUTHERN AFRICA

1-<u>neilcghart@gmail.com</u>, Dept. Oceanography, University of Cape Town, South Africa 2- Ocean Systems and Climate Group, CSIR, Stellenbosch, South Africa

N.C.G Hart¹, C.J.C. Reason¹ and N. Fauchereau²

METHODOLOGY

Specific Research Question: How does El-Nino impact cloud band seasonal frequency?

RESULTS

- (1) Generally El-Nino corresponds with reduced # cloud bands (vis versa for La-Nina) for season
- (2) Few cloud bands during severe droughts in 82/83 and 02/03
- (3) No clear intraseasonal characteristic identifiable for El-Nino or La-Nina years

EL-NINO FLAVOURS

Is region sensitive to longitude of maximal El-Nino warming?

Idealised SST Forcings

Gaussian in time and space, reaching maximum expression in Dec/Jan

- Used HadAM3P seasonal forecast set-up at Climate Systems Analysis Group, UCT by Mark Tadross
- 20 ensemble members realised with climatology SST's, Eastern Pacfic (EP) and Central Pacfic (CP) idealised warming

- Model climatology lacks Nov cloud band peak, produces ~1 p/m more than observations and has spurious April peak
- EP exp suggests moderate suppression of seasonal cycle
- CP exp displays early season increase in cloud band likelihood
- CP exp suggests more robust (see box-plots) mid-season suppression of cloud band occurrence

BACKGROUND

Overarching Research Question:

How does ENSO project into daily rainfall over

southern Africa during austral summer?

WHAT CLOUD BANDS?

- Know regionally as Tropical Temperate Troughs (TTTs)
- Subtropical S. Afr. Supplied moisture by NE winds, deep convection triggered by approach of mid-latitude upper-level trough \mapsto substantial summer season rain (eg. Hart et al 2011)
- Produce over 50% total season rainfall during some summers (Harrison, 1984)

ENSO HAS A REGIONAL INFLUENCE?

KNOW:

Nino3.4 strongly related to summer rainfall total

DON"T KNOW:

How ENSO modulates seasonal cycle? Why strong El-Nino events (97/98, 09/10) didn't produce drying suggested by correlation?

NDJF Rain corr to Nino3.4

Use Computer Vision Humans identify and synthesise features

from many different atmospheric variables

- How we approximate that ability: (Hart et al in prep)
- Raw OLR, other variables use ∇^2 to highlight depressions/jet zones
- 2 Threshold data, see above histograms, and plot
- 3 Apply connected component labeler to "blob" contiguous data
- 4 Build tracks of blobs in each variable
- 5 Associate tracks to OLR blob tracks that met cloudband criteria at least once

Flag Cloud Bands

55°S

Synthesize Meteorology

Tracks and Blobs associate with event: • Red/White \mapsto 850mb depressions

• Purple/Cyan $\mapsto 250$ mb troughs

SEASONAL CYCLE

Cloudband Annual Grid-Point Count Climatology: NOAA-OLR

20°S 25°S 40°S 45°S 50°S

THIS WORK WAS MADE POSSIBLE WITH:

- Outgoing longwave radiation (Liebmann & Smith 1996)
- NCEP-DOE II 6-hourly variables (Kanamitsu 2002)
- Water Research Commission daily station rainfall (Lynch 2003) Software
- Python 2.7: matplotlib, Basemap, NumPy, SciPy, PIL, PyClimate • Python wrappers into C++ Libraries: OpenCV, cvblob