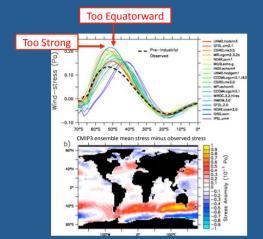


Ocean Carbon Uptake Influenced by Model Wind Bias


Neil C. Swart¹ and John C. Fyfe²

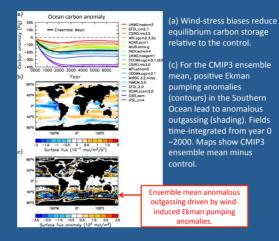
¹School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada (ncswart@uvic.ca).

²Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada.

1. Pre-Industrial Wind-Stress Bias

The CMIP3 models pre-industrial Southern Hemisphere winds shown here are systematically equatorward displaced and strong biased relative to an observed pre-industrial wind-stress derived from four reanalysis products including the NOAA-CIRES 20th century reanalysis¹. The available CMIP5 models show a similar bias.

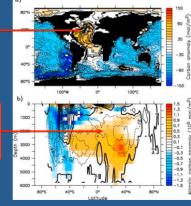
2. Question:


Is ocean carbon uptake in coupled carbon-climate models influenced by model pre-industrial wind-stress bias?

3. Experimental Design

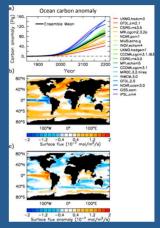
The UVic ESCM² is forced with the pre-industrial windstress from 18 CMIP3 models and compared with a control run using observed winds.

Using a single intermediate complexity model forced with the CMIP3 winds eliminates the influence of intermodel differences (e.g. ocean mixing) and isolates the effect of wind-biases on ocean carbon.


4. Reduced Equilibrium Carbon Storage

5. Changed Ocean Carbon Distribution

Atlantic accumulation tied to MOC slowdown

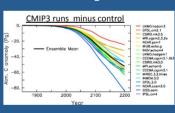


CMIP3 ensemble mean minus control

(a) Wind-biases cause carbon accumulation in the Atlantic, with reduced carbon storage in the Pacific for the CMIP3 ensemble mean relative to the control.

(b) The Atlantic accumulation is associated with a slowdown of the MOC. The MOC slowdown occurs because the CMIP3 equatorward biased winds reduce the Indo-Atlantic salt flux (Agulhas leakage). See the paper for a model-by-model breakdown.

6. Excessive Transient Carbon Uptake



(a) CMIP3 runs overestimate ocean carbon uptake relative to the control under emissions that are historical (1850 -2000), then SRES A2 (2000 – 2100), and constant thereafter. (c) Increased uptake is due to anomalously low equatorial outgassing. This is caused by low deep-

equatorial ourgassing. This is caused by low deep-water carbon concentrations established in pre-industrial equilibria (4). Maps show CMIP3 ensemble mean minus control.

7. Reduced Atmospheric CO₂

•Atmospheric CO₂ concentrations in the 21st century are lower in the CMIP3 runs than in the control. This results from the excessive ocean carbon uptake

8. Conclusions and Implications

•CMIP3 pre-industrial wind-stress biases lead to:

- 1. Reduced equilibrium ocean carbon storage.
- 2. Redistribution of carbon in the ocean.
- 3. Excess ocean carbon uptake during climate-change experiments.
- An under-estimate of 21st century atmospheric CO₂, and thus an altered carbon-climate response.

 The available CMIP5 models show similar wind-biases too, which will likely lead to the carbon cycle errors we describe, relative to simulations with unbiased winds.

9. References

¹Compo, G.P. et al., The Twentieth Century Reanalysis Project, Q. J. Roy. Meteor. Soc., 654, 1-28 (2011). ²Weaver, A.J et al., The UVIc Earth System Climate Model: Model Description, Climatology, and Applications to Past, Present and Future Climates, Atmos. Ocean, 29, 1-68 (2001).