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1. Problem Statement

4. Evaluation Testbed: Shallow Water Equations
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Computational models approximate mathematical 
descriptions that itself approximate physical 
processes. We want to quantify the errors in 
physical quantities of interest for given solutions of 
computational models. The knowledge of these 
computational errors in physical quantities is 
essential to their scientific interpretation, 
comparable to the necessity of error bars in 
measurements.

We estimate the error in approximated physical 
quantities, called goals. To do so, we construct local 
error descriptions that learn the model error 
characteristics by analyzing model behavior on 
varying resolutions.

Our algorithm allows a variety of local error 
descriptions; this poster focuses on stochastic local 
error descriptions, leading to an ensemble of error 
estimates, the posterior goal ensemble.

2. Goal Errors as Weighted Sum of Local Errors

We approximate goal errors for a given problem as 
the weighted sum of local model errors. The weights 
are the solution of a dual problem to the given 
model.
The solution of this dual problem shows the 
sensitivity of output goals to changes in the solution 
itself. This sensitivity is used to connect local errors 
in the solution with the final output error in physical 
goals.

The goal error estimate (1) is a scalar product of two 
components:

1) a local error estimator   
2) the solution of a dual problem      . 

Our algorithm shows a way to obtain both 
components for generic models of geophysical fluid 
dynamics.
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Model: 

We use a discrete model of the nonlinear shallow 
water equations on the sphere. The discretization is 
a c-type staggered finite volume / difference hybrid 
on a triangular spherical grid with semi-implicit time-
stepping (ICON-SW).

5. The Central Limit 
Theorem and Local Errors

• We adopt a numerical error estimation method 
from computational fluid dynamics to a new and 
challenging time-evolving problem in a geophys-
ical fluid dynamics context.  

• We introduce the idea of local errors as a 
stochastic process whose properties can be 
learned. The influence of the local errors on the 
goal is calculated with Algorithmic Differentiation.

• We derive an ensemble from a single model run.

• We show a new method to estimate numerical 
errors that employs a concept of local learning to 
estimate goal errors.

• We evaluate this method with promising results 
for test cases of the spherical shallow water 
equations.

• The posterior ensemble from one model run is 
comparable to a multi-run stochastic physics 
forward ensemble.

Figure 4: On the x-axis is time. On the y-axis is regional potential 
energy for TC1 (resolution~1000km). Top row shows an initial condition 
ensemble (ICE), middle row shows a stochastic physics ensemble 
(SPE), bottom row shows a posterior ensemble (PE).
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3. Posterior Goal Ensembles: the Algorithm

Figure 3: 
Top: Local error random process (Gaussian and Exponential).
Bottom: Goal error random process for TC1 after 6 hours.

Figure 5: On the x axis is time, on the y axis potential energy for TC1 and TC2. We show the development of the goal and the corresponding error 
bounds derived from the posterior goal ensemble (resolution~500 km average grid cell distance).

The choice of description of the local error 
random process is a priori free. As a test, we 
assume either a Gaussian or an exponential 
distribution. The resulting goal error distribution 
becomes normal for both local error distributions. 
This can be explained by the central limit 
theorem: if the local error processes are 
independent, symmetric and have zero mean, the 
resulting distribution is Normal and has also zero 
mean. Our method is an efficient and cheap way 
to analyze the linear propagation of local errors 
and investigate the influence of non-symmetric 
error distributions in the future.

Figure 1: Typical goal sensitivities are shown for a 48h backward run after a 48h forward integration. The plots are normalized. 
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Two Test Cases:

TC1: Time-evolving solid body rotation. This test 
case represents a regular global flow.
TC2: Zonal flow against a mountain  (Williamson 
TC5). This test case represents a regional 
perturbation and the onset of turbulence.

Figure 2:  TC1 is shown in the top row, TC2 in the bottom row. The left column shows the analytical topography, the middle column shows the initial 
condition of the height field and the right column the meridional velocity after 12 hours.

We compare our posterior ensembles (PE) to 
standard prior ensembles, i.e., initial condition 
ensemble and stochastic physics ensemble (SPE). 
We observe a similar development of ensemble 
spread for PE/SPE. The SPE spread shows higher 
variability, probably because the ensemble size is 
too low for a converged goal PDF.
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The new idea:

Our algorithm allows us to use a wide class of error 
descriptions and learn model specific properties. 
This learning involves the solution of the model on 
varying resolutions for a single time step and the 
comparison between the solutions.
If we choose a stochastic error description, the 
resulting goal error estimates are stochastic as well; 
we call the resulting ensemble of goal 
approximations posterior goal ensemble.
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