Formalizing Uncertainty About Climate Feedbacks **Derek Lemoine**

dlemoine@email.arizona.edu

www.dereklemoine.com University of Arizona "Climate sensitivity distributions depend on the possibility that models share biases" (J. of Climate, 2010) Temperature change is a nonlinear The methods used to produce a best guess are

Several types of feedbacks determine the magnitude of climate change.

CO2

Climate

carbon

feedbacl

function of non-dimensional feedback

Hierarchical methods have different levels of parameters, which separates several sources of uncertainty. 1) True value 2) Shared bias: To 3) Between-study what extent are

+ Bias variation: Which model is best? Standard deviation: σ

Data: Standard deviation: @ 4) Within-study variation

No data for unknown/unmodeled feedbacks 5) Omitted feedbacks

models wrong in

the same way?

"Paleoclimatic warming increased carbon dioxide concentrations" (J. of Geophysical Research, 2010) e can use orbital forcing to isolate the

How can we isolate the causal effect of warming on carbon dioxide?

- Coupled climate-carbon cycle models
- Friedlingstein et al. (2003,2006), Cadule et al. (2009)
- Because models share biases, it is important to obtain a different type of estimate.
- Paleoclimatic data
- Scheffer et al. (2006), Torn and Harte (2006), Cox and Jones (2008), Frank et al. (2010)
- Assumptions underlying univariate Ordinary Least Squares probably bias previous results upwards.

Berger, 1978; Jouzel et al., 2007; Lüthi et al., 2008

If we can estimate the effect of temperature on CO_2 , we can calculate the strength of climatecarbon feedbacks.

Climate-carbon

We
effe
effe

Sensitivity of temperature to change in radiative forcing in absence of feedbacks: 0.315 K (W/m²)⁻¹

0.4

not necessarily the methods that best estimate the probability of less likely outcomes.

ect of CO₂ on temperature from the ect of temperature on CO₂.

Results: Posterior distributions

Priors allow the possibility of shared biases and omitted feedbacks?

Allowing possible shared biases moves some probability mass to lower values for climate sensitivity while also thickening the positive tail.

Conclusions: Feedback probability

- Posterior distributions for feedbacks and climate sensitivity. are especially sensitive to prior beliefs about models shared structural biases.
- These posterior distributions are best constrained by narrowing prior beliefs about shared biases or by obtaining estimates with uncorrelated biases.
- · The hierarchical Bayes framework provides a means of updating beliefs as new models and techniques for validating them become available.
- Possible refinements: a) Method for estimating how connected models may be b) How to use (and optimize) information that is not a model's best guess

Conclusions: Climate-carbon feedback

- Orbital forcing provides a strong instrument. It produces positive feedback estimates in line with those of coupled climate-carbon cycle models.
- Climate-carbon feedback is not significantly different from 0 on sub-millennial timescales.
- Estimation at sub-century timescales is limited by the density and extent of paleoclimatic data
- Climate-carbon feedback is not a dominant source of uncertainty about future temperature change, but it does increase the probability of extreme outcomes.
- · Possible refinement: Nonlinear relation between temperature and orbital forcing