Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example

Yevgeniy Frenkel*, Andrew J. Majda†, Boualem Khouider‡

*†Department of Mathematics and Center for Atmosphere-Ocean Science, Courant Institute, New York University, New York, New York
‡Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia
fnrench@cims.nyu.edu

Motivation

- Despite the continued research efforts by the climate community, the present coarse resolution GCMs, used for the prediction of weather and climate, poorly represent variability associated with tropical convection.
- The convectively coupled waves (CCW) captured by the models often lack important features, such as front-to-rear vertical tilt which is of immense importance for the convective momentum transport. Furthermore, the mean structure of large-scale circulations may not be physical.
- It is believed that the deficiency is due to inadequate treatment of cumulus convection. All of the above shortcomings will be corrected by the stochastic parameterization considered here.

An analog of deterministic GCM convective parameterization with clear deficiencies.

- Here deterministic multicloud parameterization [4] in a suboptimal regime is used to provide a reference point that roughly corresponds to the behavior of a paradigm GCM parameterization with clear deficiencies.
- Time-averaged zonal structure of the heating fields of Walker circulation with extraneously sharp peak in convective heating.
- Precipitation corresponding to CCWs. The extremely stable waves circle the domain and weakly interact with the mean flow.
- Eastward propagating CCW. The lack of congestus heating diminishes the front-to-rear vertical tilt of the heating field.

Stochastic Multicloud model

- The multicloud parameterization framework assumes three heating profiles associated with the main cloud types that characterize organized tropical convective systems: cumulus congestus clouds that heat the lower troposphere and cool the upper troposphere, through radiation and detrainment, deep convective towers that heat the whole tropospheric depth, and the associated lagging-stratiform anvils that heat the upper troposphere and cool the lower troposphere, due to evaporation of stratiform rain [4,5,6].

Results

- Improved mean structure of Walker circulation
- Intermittent coherent structures contribute to higher variability.

Conclusions

- The stochastic model produces realistic mean Walker-cell circulation and dramatically improves the variability of tropical convection. This increase in variability comes from intermittent coherent structures such as synoptic and mesoscale convective systems, analogs of squall lines and convectively coupled waves seen in nature whose representation is improved by the stochastic parameterization. Both the structure of the mean circulation and waves are comparable to the results of CRM simulations [2].

References