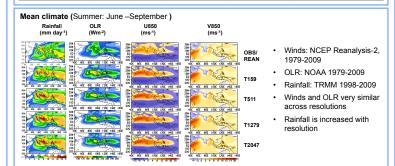
Impact of horizontal resolution on the tropical intraseasonal variability: Results from the Project Athena

Deepthi Achuthavarier¹, V. Krishnamurthy¹, J. L. Kinter III¹, B. Cash¹, C. Stan¹, L. Marx¹, J. Adams¹, E. Altshuler¹, P. Dirmeyer¹, B. Doty¹, B. Huang¹, J. Manganello¹, T.Wakefield¹, E. Jin², T. Palmer³, M. Hamrud³, T. Jung³, M. Miller³, P. Towers³, N. Wedi³ M. Satoh⁴, H. Tomita⁵, C. Kodama⁶, Y. Yamada⁶, T. Nasuno⁶, K. Oouchi⁶, H. Taniguchi⁷

¹Center for Ocean-Land-Atmosphere Studies, USA. ²George Mason University, USA. ³European Centre for Medium-range Weather Forecasts, United Kingdom. ⁴University of Tokyo, Japan. FRIKEN Advanced Institute for Computational Sciences, Japan. FJapan Agency for Marine-Earth Science and Technology, Japan. International Pacific Research Center, USA.

Objective Examine the impact of spatial resolution on the South Asian monsoon mean climate and the northward propagating summer intraseasonal oscillation **Null hypothesis** Improved Better mean orography monsoon climate Finer resolution Improved Better representation of Better intraseasonal convection-circulation oscillations circulation interaction Model runs Resolution Length of each Model Total period Prescribed SST, sea ice Grid size integration Spectral (km) T159 125 ERA-40 1960-1989, T159 1960-2007 (48 T511 39 **ECMWF** Integrated 395 days ERA-Interim 1990-2007,


integrations)

1989-2007 (19

integrations)

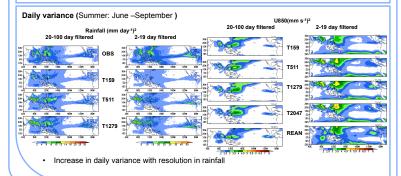
(Both interpolated to the

respective model grids)

1 Nov Year-1

30 Nov Year-2

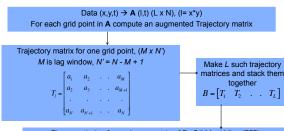
Forecast System


(IFS)

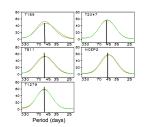
T1279

T2047

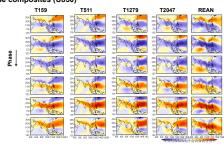
15

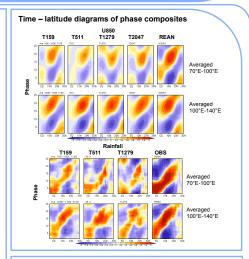

10

Summer intraseasonal mode

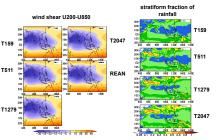

- Analysis used: Multi-channel Singular Spectrum Analysis (MSSA) on 20-100 day filtered U850 anomalies
- · Higher resolution model outputs interpolated to T159/125 km grid.
- · Period analyzed: 1999-2008, MJJASO season
- MSSA lag window length: 85 days

MSSA


Eigen analysis of covariance matrix of **B**, $C(LM \times LM) = (B^TB)$ Space-time EOF (x,y,t=1,...,M), Space-time PC (t=1,...,N')Reconstructed Component, RC = EOF * PC


Power Spectra of the northward propagating mode

Data	ISO period (days)	Variance (%)
T159	51	8.8
T511	52	10.1
T1279	52	11.3
T2047	47	10.7
NCEP Rean2	45	13.2


Phase composites (U850)

Summary and discussion

- Mean climatology over the monsoon region is similar across all the resolutions; especially in the winds.
- · Marginal improvement in daily variance in precipitation
- · Northward propagating ISO:
- · Spatial structure and amplitude similar across all runs
- · IFS model, even at T159 resolution, simulates the northward propagation of U850 reasonably well
- Propagation in precipitation is weak for all resolutions
- Mean easterly wind shear is supposed to favor emission of Rossby waves; thereby critical for the northward propagation. This is similar in all resolutions.
- Increase in stratiform precipitation →? better ISO. Stratiform fraction is slightly increased from T159 to T511; but is not reflected in the ISO.

For correspondence: deepthi@cola.iges.org

